1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
14

EARTH SCIENCE PLEASE ANSWER

Physics
1 answer:
Rzqust [24]3 years ago
4 0

The Earth Science answers are shown below.

Explanation:

1. The movement of the sun will change the angle it has on the sky in 30 minutes, it is always moving from the east to the west, so in 30 minutes it would move more west, no matter at what time you make the experiment. From Earth, the Sun looks like it moves across the sky in the daytime and appears to disappear at night. This is because the Earth is spinning towards the east. The Earth spins about its axis, an imaginary line that runs through the middle of the Earth between the North and South poles

2. No, both marks are the same distance from the ground.  the amount of stick above the mark will not affect the distance that the shadow of the mark moves at all. The Sun's clockwise motion is an apparent motion caused by the rotation of the Earth. The counterclockwise rotation of the Earth in the Sun's light causes the shadow of the gnomon to move clockwise. As the Sun appears to move higher above the horizon before solar noon, the shadow grows shorter and shorter.

3. In the summer the shadows are shorter, and in the winter the shadows are longer. In the morning your shadow will point west and in the afternoon it will point east. If your shadow is long, it is near sunrise or sunset. Your shadow is shortest around noon.

4. If the sun rises in the east and sets in the west, then the Earth should rotate in the opposite direction from west to east (anti-clockwise). Earth's spin (or rotation) on its axis. Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.

You might be interested in
2. A rock is dropped off a bridge. How fast is the rock
zhenek [66]

Answer:

a) The velocity of rock at 1 second, v = 9.8 m/s

b) The velocity of rock at 3 second,  v = 29.4 m/s

c) The velocity of rock at 5.5 second,  v = 53.9 m/s

Explanation:

Given data,

The rock is dropped from a bridge.

The initial velocity of the rock, u = 0

a) The velocity of rock at 1 second,

   Using the first equation of motion

                         v = u + gt

                         v = 0 + 9.8 x 1

                          v = 9.8 m/s

b) The velocity of rock at 3 second,

                         v = u + gt

                         v = 0 + 9.8 x 3

                          v = 29.4 m/s

c) The velocity of rock at 5.5 second,

                         v = u + gt

                         v = 0 + 9.8 x 5.5

                         v = 53.9 m/s

5 0
3 years ago
A soccer player kicks a ball at rest on the
scoundrel [369]

The kinetic energy and gravitational potential energy changes during its movement from ground to the top height.

<h3>What happens to kinetic and potential energy while motion?</h3>

When the ball moves upward, its gravitational potential energy is increases and kinetic energy begins to decrease but when the ball falls towards the earth, its gravitational potential energy is transformed into kinetic energy. When the ball collides with the ground, the kinetic energy is transformed into other forms of energy.

Learn more about kinetic energy here: brainly.com/question/20658056

5 0
2 years ago
Tutorial Exercise An unstable atomic nucleus of mass 1.83 10-26 kg initially at rest disintegrates into three particles. One of
kogti [31]

Answer:

A) v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) K_total = 373.08 × 10^(-15) J

Explanation:

We are given;

Mass of unstable atomic nucleus; M = 1.83 × 10^(-26) kg

Mass of first particle; m1 = 5.03 × 10^(-27) kg

Speed of first particle in y-direction; v1 = (6 × 10^(6) m/s) j^

Mass of second particle; m2 = 8.47 × 10^(-27) kg

Speed of second particle in x - direction; v2 = (4 × 10^(6) m/s) i^

Now, we don't have the mass of the third particle but since we are told the unstable atomic nucleus disintegrates into 3 particles, thus;

M = m1 + m2 + m3

1.83 × 10^(-26) = (5.03 × 10^(-27)) + (8.47 × 10^(-27)) + m3

m3 = (1.83 × 10^(-26)) - (13.5 × 10^(-27))

m3 = 4.8 × 10^(-27) kg

A) Applying law of conservation of momentum, we have;

MV = (m1 × v1) + (m2 × v2) + (m3 × v3)

Now, the unstable atomic nucleus was at rest before disintegration, thus V = 0 m/s.

Thus, we now have;

0 = (m1 × v1) + (m2 × v2) + (m3 × v3)

We want to find the velocity of the third particle v3. Let's make it the subject of the formula;

v3 = [(m1 × v1) + (m2 × v2)]/(-m3)

Plugging in the relevant values, we have;

v3 = [(5.03 × 10^(-27) × 6 × 10^(6))j^ + (8.47 × 10^(-27) × 4 × 10^(6))i^]/(-4.8 × 10^(-27))

v3 = [(30.18 × 10^(-21))j^ + (33.88 × 10^(-21))i^]/(-4.8 × 10^(-27))

v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) Formula for kinetic energy is;

K = ½mv²

Now,total kinetic energy is;

K_total = K1 + K2 + K3

K1 = ½ × 5.03 × 10^(-27) × (6 × 10^(6))²

K1 = 90.54 × 10^(-15) J

K2 = ½ × 8.47 × 10^(-27) × (4 × 10^(6))²

K2 = 67.76 × 10^(-15)

To find K3, let's first find the magnitude of v3 because it's still in vector form.

Thus;

v3 = √[(-6.29 × 10^(6))² + (-7.06 × 10^(6))²]

v3 = 9.46 × 10^(6) m/s

K3 = ½ × 4.8 × 10^(-27) × (9.46 × 10^(6))²

K3 = 214.78 × 10^(-15) J

K_total = (90.54 × 10^(-15)) + (67.76 × 10^(-15)) + (214.78 × 10^(-15))

K_total = 373.08 × 10^(-15) J

7 0
3 years ago
A train slows down as it rounds a sharp horizontal turn, going from 94.0 km/h to 46.0 km/h in the 17.0 s that it takes to round
Svetllana [295]

Answer:

1.41 m/s^2

Explanation:

First of all, let's convert the two speeds from km/h to m/s:

u = 94.0 km/h \cdot \frac{1000 m/km}{3600 s/h} = 26.1 m/s

v=46.0 km/h \cdot \frac{1000 m/km}{3600 s/h}=12.8 m/s

Now we find the centripetal acceleration which is given by

a_c=\frac{v^2}{r}

where

v = 12.8 m/s is the speed

r = 140 m is the radius of the curve

Substituting values, we find

a_c=\frac{(12.8 m/s)^2}{140 m}=1.17 m/s^2

we also have a tangential acceleration, which is given by

a_t = \frac{v-u}{t}

where

t = 17.0 s

Substituting values,

a_t=\frac{12.8 m/s-26.1 m/s}{17.0 s}=-0.78 m/s^2

The two components of the acceleration are perpendicular to each other, so we can find the resultant acceleration by using Pythagorean theorem:

a=\sqrt{a_c^2+a_t^2}=\sqrt{(1.17 m/s^2)+(-0.78 m/s^2)}=1.41 m/s^2

6 0
3 years ago
Read 2 more answers
A pressure of 400 Pa is applied to an area of 2.5 m2.What force applies this pressure?
Irina-Kira [14]
F = 400 Pa x 2.5 m2
F = 1 kN
4 0
3 years ago
Other questions:
  • Compared to the density of liquid water, the density of an ice cube is
    8·2 answers
  • all but which of the following might cause a tsunami? a. volcanic eruption b. flooding c. landslide d. earthquake
    12·2 answers
  • When you drink cold water, your body must expend metabolic energy in order to maintain normal body temperature (37° C) by warmin
    10·1 answer
  • Maxwell’s theory of Electromagnetism in 1865 was the first "unified field theory" _________ no further theory has united the ele
    14·1 answer
  • Please help me with 1,2,3,4,5,6
    12·1 answer
  • A cup falls off of a table from a height of 0.75 m. What is the impact speed of the cup?
    5·2 answers
  • PLZ HELP I DONT GET IT
    5·1 answer
  • 1 point
    8·1 answer
  • If three balls of different materials were dropped at the same time from the same height, which would hit the ground first? (Ass
    7·1 answer
  • In un lento processo di riscaldamento di 200 g di H2O da 60 gradi a 100 gradi evaporano 10 g di H2O. Assumendo per il calore lat
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!