Colloid mixtures can be solids, liquids, or gases.
EX- Would include, butter, milk, and frog. There are actually 8 types of colloid mixtures, they are usally described by orginal state.
Answer:
Option B
Explanation:
<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>
Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball
In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball
∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club
Answer:
The thrown rock will strike the ground
earlier than the dropped rock.
Explanation:
<u>Known Data</u>


, it is negative as is directed downward
<u>Time of the dropped Rock</u>
We can use
, to find the total time of fall, so
, then clearing for
.
![t_{D}=\sqrt[2]{\frac{300m}{4.9m/s^{2}}} =\sqrt[2]{61.22s^{2}} =7.82s](https://tex.z-dn.net/?f=t_%7BD%7D%3D%5Csqrt%5B2%5D%7B%5Cfrac%7B300m%7D%7B4.9m%2Fs%5E%7B2%7D%7D%7D%20%3D%5Csqrt%5B2%5D%7B61.22s%5E%7B2%7D%7D%20%3D7.82s)
<u>Time of the Thrown Rock</u>
We can use
, to find the total time of fall, so
, then,
, as it is a second-grade polynomial, we find that its positive root is
Finally, we can find how much earlier does the thrown rock strike the ground, so 
Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
So, the angle between two vectors having equal magnitude is equal to 120º.
Explanation:
<h2>:) Correct me if I'm wrong...</h2>