The masses of the liquids are different making them have different densities
Answer:
Investigation B, Step 2
Explanation:
The <em>colour change</em> is a good indication of a <em>chemical change</em>. The sugar molecules were most likely changing into something else.
Investigation A, Step 1. <em>Wron</em>g. The dissolving of salt is a <em>physica</em>l process.
Investigation A, Step 2. <em>Wrong</em>. You simply boiled off the water (a <em>physical</em> process) and recovered the salt.
Investigation B, Step 1. <em>Wrong</em>. The dissolving of sugar is a <em>physical</em> process.
Answer:
(i) Oxidizing Agent: NO2 / Reducing Agent NH3-
(ii) Oxidizing Agent AgNO3 / Reducing Agent Zn
Explanation:
(i) 8NH3( g) + 6NO2( g) => 7N2( g) + 12H2O( l)
In this reaction, both two reactants contain nitrogen with a different oxidation number and produce only one product which contains nitrogen with a unique oxidation state. So, nitrogen is oxidized and reduced in the same reaction.
Nitrogen Undergoes a change in oxidation state from 4+ in NO2 to 0 in N2. It is reduced because it gains electrons (decrease its oxidation state). NO2 is the oxidizing agent (electron acceptor).
Nitrogen Changes from an oxidation state of 3- in NH3 to 0 in N2. It is oxidized because it loses electrons (increase its oxidation state). NH3 is the reducing agent (electron donor)
(ii) Zn(s) +AgNO3(aq) => Zn(NO3)2(aq) + Ag(s)
Ag changes oxidation state from 1+ to 0 in Ag(s).
Ag is reduced because it gains electrons and for this reason and AgNO3 is the oxidizing agent (electron acceptor)
Zn Changes from an oxidation state of 0 in Zn(s) to 2+ in Zn(NO3)2. It is oxidized and for this reason Zn is the reducing agent (electron donor).
Balanced equation:
Zn(s) +2AgNO3(aq) => Zn(NO3)2(aq) + 2Ag(s)
Answer:
Eight foods are responsible for 90 percent of all reactions: peanut, tree nut, milk, egg, fish, shellfish, soy, and wheat.
hope it helped
Answer:
The formula for the anhydrous compound that was part of the mixture called natron that was used by the Egyptians is Na2(CO3)10(H2O).
They use this compound for medicine, cookery, agriculture, in glass-making and to dehydrate egyptian mummies.
Compound of sodium carbonate and sodium bicarbonate was the name of the resulting hydrate that formed.