Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.

Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.

Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
Answer:
6. protons, mass number from the atomic number
7. Li= ,
Answer:
covalent
Explanation:
The carbon and the nitrogen very often form bonds in nature, carbon-nitrogen bonds, which are covalent types of bonds. In fact, the bonds between the carbon and nitrogen are one of the most abundant in the biochemistry and the organic chemistry. The bonds between these two can be double bonds, as well as triple bonds. The carbon-nitrogen bonds have the tendency to be strongly polarized toward the nitrogen.
The answer is Hydrogyn bonding. It keeps the water molocules bonded together and in a liquid state, without it it'd be in a gashious state.