<span>The answer is B. 72.25 percent.
The Hardy-Weinberg principle can be used:</span>
<em>p² + 2pq + q² = 1 </em>and <em>p + q = 1</em>
where <em>p</em> and <em>q</em> are the frequencies of the alleles, and <em>p²</em>, <em>q²</em> and <em>2pq</em> are the frequencies of the genotypes.
<span>The <em>p</em> allele (<em>q</em>) is found in 15% of the population:
q = 15% = 15/100
Thus, q = </span><span>0.15
To calculate the <em>P</em> allele frequency (<em>p</em>), the formula <em>p + q = 1</em> can be used:
If p + q = 1, then p = 1 - q
p = 1 - 0.15
Thus, </span><span>p = 0.85
Knowing the frequency of the <em>P</em> allele (<em>p</em>), it is easy to determine the frequency of the <em>PP </em>genotype (<em>p²</em>):
p² = 0.85² = 0.7225
Expressed in percentage, p² = 72.25%.</span>
Answer:
Option-B
Explanation:
The brain is an organ composed of neurons which controls all the voluntary and involuntary of animals. In humans, the brain is located in the skull where the brain is suspended in a fluid called cerebrospinal fluid.
As humans ages and becomes old aged, the neurons in the brain losing their ability to perform their function, if they are lost they cannot be regenerated.
The lesions appear on the white matter of the brain and the brain shrink. Due to these known and other unknown features, the process controlled by these neurons become inadequate and shows slower brain processing and weak memory.
Thus, Option-B is the correct answer.
Natural selection doesn't favor traits that are somehow inherently superior. Instead, it favors traits that are beneficial (that is, help an organism survive and reproduce more effectively than its peers) in a specific environment. Traits that are helpful in one environment might actually be harmful in another.
(one again, I hope this helps ^^)
Answer:
Nitrogen cycle
Explanation:
Nitrogen fixation is the process by which atmospheric nitrogen is converted by either a natural or an industrial means to a form of nitrogen such as ammonia. In nature, most nitrogen is harvested from the atmosphere by microorganisms to form ammonia, nitrites, and nitrates that can be used by plants.
Answer: magnesium atom
Explanation:
magnesium atom
The chlorophyll molecule consists of a central magnesium atom surrounded by a nitrogen-containing structure called a porphyrin ring; attached to the ring is a long carbon–hydrogen side chain, known as a phytol chain.