<span><span>centic<span>10-2</span></span><span>millim<span>10-3</span></span><span>microu [footnote 2]<span>10-6</span></span><span>nanon<span>10-<span>9
</span></span></span></span>
Answer:
Volume increases
Explanation:
The balloon when filled at sea level being comparatively close to the center of the earth will have higher pressure due to the influence of gravity and when this balloon is taken to the top of the mountain being away from the center of earth, it will experience a lesser pressure due to low gravity where the amount of force exerted by the air on the object is lesser as compared to to that at the sea level.
Therefore, there will be an increase in volume of the balloon as there is expansion of air on the inside of the balloon as a result of low pressure.
There is not much effect of temperature at both the sea level and the mountain top as the temperature does not impart any energy to the air molecules so as to decrease the volume.
Therefore,there is an increase in the volume of the balloon at the top of the mountain.
Percentage change in volume is given by:

The kinetic energy of the child at the bottom of the incline is 106.62 J.
The given parameters:
- <em>Mass of the child, m = 16 kg</em>
- <em>Length of the incline, L = 2 m</em>
- <em>Angle of inclination, θ = 20⁰</em>
The vertical height of fall of the child from the top of the incline is calculated as;

The gravitational potential energy of the child at the top of the incline is calculated as;

Thus, based on the principle of conservation of mechanical energy, the kinetic energy of the child at the bottom of the incline is 106.62 J since no energy is lost to friction.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
Well idk if this helps but the formula to solve acceleration is
a=F/m=(100kg)=1.0m/s 2
The air resistance on the feather would be the correct answer.