Answer:
If the distance is doubled, the force of gravity between the two bodies is one-fourth as strong as before
Explanation:
The force of gravity between two bodies depends on the mass and distance. But we will focus on distance since that's what the question asks
Therefore, the force of gravity decreases as distance between the bodies increases.
Answer:
d. decreases
Explanation:
The law of conservation of momentum tells us that the sum of momenta before the collision is equal to the sum of momenta after the collision. The bag has no momentum as it falls onto the boat because its velocity is zero in the horizontal direction. But after it hits the boat, it's momentum increases while the momentum of the system remains the same. That means a component of the system must decrease somewhere else. And that component is the velocity, not the mass, of the boat.
Answer:
A circuit with two 10 ohm resistors connected in series.
Explanation:
The formula for the equivalent resistance for resistors in parallel is
So if R1=R2= 10 
The formula for the equivalent resistance for resistors in series is
Rt = R1 + R2 So Rt= 10 + 10 = 20
Answer:
4.157 m/s
Explanation:
Average velocity: This can be defined as the ratio change in position to time interval. The S.I unit of average velocity is m/s
The expression for average velocity is given as,
V = Δx/t.............. Equation 1
Where V = average velocity, Δx = change in position on the x- axis, t = time.
But,
Δx = x₂-x₁........... Equation 2
Substitute equation 2 into equation 1
V = (x₂-x₁)/t................ Equation 3
Given: x₂ = 32.4 m, x₁ = -5 m, t = 8.9 s
Substitute into equation 3
V = [32.4-(-5)]/8.9
V = (32.4+5)/8.9
V = 37.4/8.9
V = 4.157 m/s
Hence the average velocity = 4.157 m/s