Answer:
The induced current is 26.7 mA
Explanation:
Given;
area of the loop, A = 0.078 m²
initial magnetic field, B₁ = 3.8 T
change in the magnetic field strength, dB/dt = 0.24 T/s
The induced emf is calculated as;

The resistance of the loop = 0.7 Ω
The induced current is calculated as;

Answer:
No, it's not there.
Explanation:
For a machine to be 100% efficient, it has to be with an output which is equal to its input. But machines have an out put less than an input, hence efficiency below 100%.
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².
Answer:
1.3 x 10⁻⁴ m
Explanation:
= wavelength of the light = 450 nm = 450 x 10⁻⁹ m
n = order of the bright fringe = 1
θ = angle = 0.2°
d = separation between the slits
For bright fringe, Using the equation
d Sinθ = n
Inserting the values
d Sin0.2° = (1) (450 x 10⁻⁹)
d (0.003491) = (450 x 10⁻⁹)
d = 1.3 x 10⁻⁴ m