Answer:
northern and southern sphere
Explanation:
Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

write out what you have on both sides, then just use basic multiplication to try and even out both sides. I can help if you need me to balance some for you!!
Answer:
215955.06 m/s^2
Explanation:
length of barrel, s = 0.89 m
initial velocity of the bullet, u = 0 m/s
Final velocity of the bullet, v = 620 m/s
Let a be the acceleration of the bullet in the barrel
Use third equation of motion, we get


a = 215955.06 m/s^2
Thus, the acceleration of the bullet inside the barrel is 215955.06 m/s^2.