Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
<span>When two objects collide their momentum after the collision is explained by</span> the conservation of momentum
Answer:
Collinear is when points are in the same straight line but coplanar is when points are all on the same plane.
Answer:
25°C
Explanation:
Using the linear expansivity formula expressed as;
∝ = ΔL/lΔθ
∝ is coefficient of lineat expansion = 1.2 ∙ 10⁻⁵ °C⁻¹
ΔL is the change in length = 6.00036-6
ΔL = 0.00036m
l is the original length = 6m
Δθ is the change in temperature =θ₂-20
Substituting into the formula;
1.2 ∙ 10⁻⁵ °C⁻¹ = 0.00036/6(θ₂-20)
cross multiply
1.2 ∙ 10⁻⁵ * 6 = 0.00036/(θ₂-20)
7.2 ∙ 10⁻⁵= 0.00036/(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵(θ₂-20)
0.00036 = 7.2 ∙ 10⁻⁵θ₂-144∙ 10⁻⁵
7.2 ∙ 10⁻⁵θ₂ = 0.00036+0.00144
7.2 ∙ 10⁻⁵θ₂ = 0.0018
θ₂ = 0.0018/0.000072
θ₂ = 25°C
Hence the temperature at which this bar must be acidic for its compression is 6,00036 m is 25°C
The mass of the car is 2000 kg
Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:

where
is the net force
m is the mass
a is the acceleration
In this problem, we have:
is the acceleration of the car
Each person applies a force of 400 N, and there are five men, so the total force applied is

Therefore, the mass of the car is:

Learn more about Newton's second law of motion:
brainly.com/question/3820012
#LearnwithBrainly