The amount of diffraction depends on the wavelength of light, with shorter wavelengths being diffracted at a greater angle than longer ones (in effect, blue and violet<span> light are diffracted at a larger angle than is red light).
I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
The resulting change in momentum of the system will be +18.6 Ns. The momentum is conserved.
<h3>What is the law of conservation of momentum?</h3>
According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
The given data in the problem is;
m is the mass =6.0 kg
t is the time interval=2 second
From Newton's second law;

From the graph;

The change in the momentum is;

Hence, the resulting change in momentum of the system will be +18.6 Ns.
To learn more about the law of conservation of momentum, refer;
brainly.com/question/1113396
#SPJ1