Answer:
B.electromagnetic spectrum
Explanation:
Electromagnetic spectrum is used to describe all of the wavelengths of light waves.Generally wavelength of the wave is denoted by λ.
Wavelength is the distance between two consecutive crest .Wavelength of the red color is minimum and wavelength of the violet color is maximum in the light spectrum.
So the answer is B.
Electromagnetic spectrum
A). very large
B). very small
These are both wishy-washy words ... words that mean different things
to different people, and may even mean different things to the same person
at different times.
Even if everybody agreed on the meaning of these words, we wouldn't
have any idea which one may apply to the rover, because there's nothing
in the picture that gives any size reference ! We don't know from the picture
whether this thing is the size of a school book or a school bus. Or somewhere
in between.
C). very mathematical
What in the world does this mean ? ?
I don't see a single number or math symbol anywhere in the drawing.
I don't think this is the correct choice.
D). very complex
In the drawing, there are thirteen different labels of things,
and eight of them have such long names that only their initials
are shown.
This is one complicated combination of many different machines.
I think this is the best choice of description.
Answer:
Explanation:
Intensity of sound = sound energy emitted by source / 4 π d² , where d is distance of the source .
A )
Intensity of sound at 1 m distance = 60 /4 π d²
d = 1 m
Intensity of sound at 1 m distance = 60 /(4 π 1²)
= 4.78 W m⁻² s⁻¹
B )
Intensity of sound at 1.5 m distance = 60 /4 π d²
d = 1.5 m
Intensity of sound at 1 m distance = 60 /(4 π 1.5²)
= 2.12 W m⁻² s⁻¹
C )
Intensity of sound due to 4 speakers at 1.5 m distance = 4 x 60 /4 π d²
d = 1.5 m
= 4 x 60 /(4 π 1.5²)
= 8.48 W m⁻² s⁻¹
D )
Intensity of sound due to .06 W speaker must be 10⁻¹² W s ⁻² . Let the distance be d .
.06 /4 π d² = 10⁻¹²
d² = .06 /4 π 10⁻¹²
d = 6.9 x 10⁴ m .
The answer would be "mechanical". Hope I helped. :)
To determine the force of the system, we use Newton's Second Law of motion which relates force and mass where they are directly proportional and the constant of proportionality is the acceleration. We calculate as follows:
F = ma
F = 10.41 kg ( 6.5 m/s^2 )
F = 67.67 kg m / s^2 or N