Answer: 3
Explanation:
Given
One cloud is traveling at rate of 
combined velocity of the two is 
Suppose the masses of the clouds be 
Conserving momentum

The value of normal force as the slider passes point B is
The value of h when the normal force is zero
<h3>How to solve for the normal force</h3>
The normal force is calculated using the work energy principle which is applied as below
K₁ + U₁ = K₂
k represents kinetic energy
U represents potential energy
the subscripts 1,2 , and 3 = a, b, and c
for 1 to 2
K₁ + W₁ = K₂
0 + mg(h + R) = 0.5mv²₂
g(h + R) = 0.5v²₂
v²₂ = 2g(1.5R + R)
v²₂ = 2g(2.5R)
v²₂ = 5gR
Using summation of forces at B
Normal force, N = ma + mg
N = m(a + g)
N = m(v²₂/R + g)
N = m(5gR/R + g)
N = 6mg
for 1 to 3
K₁ + W₁ = K₃ + W₃
0 + mgh = 0.5mv²₃ + mgR
gh = 0.5v²₃ + gR
0.5v²₃ = gh - gR
v²₃ = 2g(h - R)
at C
for normal force to be zero
ma = mg
v²₃/R = g
v²₃ = gR
and v²₃ = 2g(h - R)
gR = 2gh - 2gR
gR + 2gR = 2gh
3gR = 2gh
3R/2 = h
Learn more about normal force at:
brainly.com/question/20432136
#SPJ1
Answer:
v = 5.15 m/s
Explanation:
At constant velocity, the cable tension will equal the car weight of 984(9.81) = 9,653 N
As the cable tension is less than this value, the car must be accelerating downward.
7730 = 984(9.81 - a)
a = 1.95 m/s²
kinematic equations s = ut + ½at² and v = u + at
-5.00 = u(4.00) + ½(-1.95)4.00²
u = 2.65 m/s the car's initial velocity was upward at 2.65 m/s
v = 2.65 + (-1.95)(4.00)
v = -5.15 m/s
Answer:
a charge Q is transferred from an initially uncharged
Explanation:
Hope this helps!