Answer:
Yes, the energy is not simply the sum of the individual binding energies at each site, it is the product of energy at each binding site of hemoglobin.
Explanation:
Myoglobin and hemoglobin are two different cells. Myoglobin binds only one oxygen while the hemoglobin has the ability to binds four oxygen atoms at its four sides. Myoglobin present in muscle tissue only while hemoglobin is present in the whole body. Oxyhemoglobin is formed when oxygen binds with hemoglobin cell. This oxygen is take to all cells and energy is released due to the breakdown of glucose molecules with this oxygen.
The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
<h3>Iron - Fe</h3>
<h3>Hydrochloric Acid- HCl</h3>
<h2><u>Solution</u></h2>


Iron + Hydrochloric Acid
Ferrous Chloride + Hydrogen
<h2>
Hope This Helps You ❤️</h2>
Answer:
Despite being such prominent feature on our planet, much of the mid-ocean ridge system remains a mystery. While we have mapped about half of the global mid-ocean ridge in high resolution, less than one percent of the mid-ocean ridge has been explored in detail using submersibles or remotely operated vehicles. so therefore we do not have enough information about them to know what will happen
Explanation:
A mid-ocean ridge or mid-oceanic ridge is an underwater mountain range, formed by plate tectonics. This uplifting of the ocean floor occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary. Mid-ocean ridges occur along divergent plate boundaries, where new ocean floor is created as the Earth’s tectonic plates spread apart. As the plates separate, molten rock rises to the seafloor, producing enormous volcanic eruptions of basalt. The speed of spreading affects the shape of a ridge slower spreading rates result in steep, irregular topography while faster spreading rates produce much wider profiles and more gentle slopes.