The final temperature of the block is 
Explanation:
The amount of thermal energy Q supplied to a substance is related to the increase in temperature of the substance,
, according to the equation

where:
m is the mass of the substance
is the specific heat capacity of the substance
In this problem, we have:
m = 1.2 kg is the mass of the block
is the amount of energy supplied to the block
is the specific heat capacity of the block
Solving for
, we find the increase in temperature:

And since the initial temperature was

The final temperature will be

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly