1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tema [17]
3 years ago
8

In an experiment, 1 mol of propane is burned to form carbon dioxide and water.

Physics
1 answer:
Natalija [7]3 years ago
5 0

Answer:

5 moles of O2are required, you can see it in your equation.

You might be interested in
As temperature increases, what happens to the density of ocean water? A. changes unpredictably B. decreases C. does not change D
Lelu [443]
As the temperature of water increases, the density of water will decrease.
4 0
3 years ago
Suppose the ski patrol lowers a rescue sled carrying an injured skier, with a combined mass of 97.5 kg, down a 60.0-degree slope
Kitty [74]

a. 1337.3 J work, in joules, is done by friction as the sled moved 28 m along the hill.

b.21,835 J work, in joules, is done by the rope on the sled this distance.

c. 23,170 J   the work, in joules done by the gravitational force on the sled d. The net work done on the sled, in joules is 43,670 J.

       

<h3>What is friction work?</h3>

The work done by friction is the force of friction times the distance traveled times the cosine of the angle between the friction force and displacement

a. How much work is done by friction as the sled moves 28m along the hill?

ans. We use the formula:

friction work = -µ.mg.dcosθ

  = -0.100 * 97.5 kg * 9.8 m/s² * 28 m * cos 60

= -1337.3 J

-1337.3 J work, in joules, is done by friction as the sled moved 28 m along the hill.

b. How much work is done by the rope on the sled in this distance?

We use the formula:

Rope work = -m.g.d(sinθ - µcosθ)

rope work = - 97.5 kg * 9.8 m/s² * 28 m (sin 60 – 0.100 * cos 60)

                     = 26,754 (0.816)

                     = 21,835 J

21,835 J work, in joules, is done by the rope on the sled this distance.

c.  What is the work done by the gravitational force on the sled?

By using  the formula:

Gravity work = mgdsinθ

                    = 97.5 kg * 9.8 m/s² * 28 m * sin 60

                    = 23,170 J

23,170 J   the work, in joules done by the gravitational force on the sled .

       

D. What is the total work done?

By adding all the values

work done =  -1337.3 + 21,835 + 23,170

                 = 43,670 J

The net work done on the sled, in joules is 43,670 J.

Learn more about friction work here:

brainly.com/question/14619763

#SPJ1

4 0
2 years ago
What must be the pressure difference between the two ends of a 2.6 km section of pipe, 36 cm in diameter, if it is to transport
ad-work [718]

Answer: 1.13(10)^{3} Pa

Explanation:

This problem can be solved by the following equation:

\Delta P=\frac{8 \eta L Q}{\pi r^{4}}

Where:

\Delta P is the pressure difference between the two ends of the pipe

\eta=0.20 Pa.s is the viscosity of oil

L=2.6 km=2600 m is the length of the pipe

Q=900 \frac{cm^{3}}{s} \frac{1 m^{3}}{(100 cm)^{3}}=0.0009 \frac{m^{3}}{s} is the Rate of flow of the fluid

d=36 cm=0.36 m is the diameter of the pipe

r=\frac{d}{2}=0.18 m is the radius of the pipe

Soving for \Delta P:

\Delta P=\frac{8 (0.20 Pa.s)(2600 m)(0.0009 \frac{m^{3}}{s})}{\pi (0.18 m)^{4}}

Finally:

\Delta P=1135.26 Pa \approx 1.13(10)^{3} Pa

7 0
3 years ago
A sample of an ideal gas is in a tank of constant volume. The sample absorbs heat energy so that its temperature changes from 33
Anuta_ua [19.1K]

Answer:

\frac{v_{2}}{v_{1}}=2.

Explanation:

The average kinetic energy per molecule of a ideal gas is given by:

\bar{K}=\frac{3k_{B}T}{2}

Now, we know that \bar{K} = (1/2)m\bar{v}^{2}

Before the absorption we have:

(1/2)m\bar{v_{1}}^{2}=\frac{3k_{B}T_{1}}{2} (1)

After the absorption,

(1/2)m\bar{v_{2}}^{2}=\frac{3k_{B}T_{2}}{2} (2)

If we want the ratio of v2/v1, let's divide the equation (2) by the equation (1)

\frac{v_{2}^{2}}{v_{1}^{2}}=\frac{T_{2}}{T_{1}}

\frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}

\frac{v_{2}}{v_{1}}=\sqrt{\frac{1340}{335}}

\frac{v_{2}}{v_{1}}=\sqrt{4}

Therefore the ratio will be \frac{v_{2}}{v_{1}}=2

I hope it helps you!

4 0
3 years ago
Read 2 more answers
A metal can containing condensed mushroom soup has mass 215 g, height 10.8 cm, and diameter 6.38 cm. It is placed at rest on its
s344n2d4d5 [400]

Answer:

Part a)

Moment of inertia of the cylinder is given as

I = 1.21 \times 10^{-4} kg m^2

Part B)

Height of the cylinder is of no use here to calculate the inertia

Part C)

Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as I = 1/2 mR^2

Explanation:

As we know that the inclined plane is of length L = 3 m

and its inclination is given as 25 degree

so we know that acceleration of center of mass of the cylinder is constant so we will have

v_f^2 = v_i^2 + 2 a L

so we have

v_f^2 = 0 + 2a(3)

now we know that

v_{avg} = \frac{L}{t} = \frac{v_f + v_i}{2}

\frac{3}{1.50} = \frac{v_f + 0}{2}

v_f = 4 m/s

Now we have know that final speed of the cylinder due to pure rolling is given as

v_f = \sqrt{\frac{2gH}{1 + \frac{I}{mR^2}}}

4 = \sqrt{\frac{2(9.81)(3 sin25)}{1 + \frac{I}{0.215(0.0319)^2}}}

I = 1.21 \times 10^[-4} kg m^2

Part B)

Height of the cylinder is of no use here to calculate the inertia

Part C)

Since we don't know about the viscosity data of the soup inside the cylinder so we can't say directly about the moment of inertia of the cylinder as I = 1/2 mR^2

8 0
2 years ago
Other questions:
  • If a snail travels at 5 m/s, how far will it travel in 90 seconds?
    11·2 answers
  • The vector position of an object is given by r what is the torque acting on the object about the origin when a force f = (−12.5i
    15·1 answer
  • Mercury is the 80th position in the periodic table how many protons does it have
    7·2 answers
  • How can we determine the strength of a sonic boom?
    11·1 answer
  • A car travels in a straight line for 4.4 h at a constant speed of 81 km/h. What is its acceleration?
    14·2 answers
  • When a manufacturer intentionally misleads customers by only revealing part of the truth about the evidence that supports a prod
    13·1 answer
  • Differences between work against friction and work against gravity.
    9·2 answers
  • Are forces present even when there is no movement?
    15·1 answer
  • # 5 what will most likely happen when an air mas of low temperature exists above a water body at a higher temperature?
    13·2 answers
  • A student makes this statement before conducting an experiment on electromagnetic radiation: "We expect the laser to diffract wh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!