The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
<span>the statement that is true regarding flexibility is : b. a joint's range of motion will be lost if the joint is not used regularly.
Our body is like a machine. If we not constantly heat it up, our body will be more prone to injury. We can see that the old people who lived within the tribe in the middle of the mountain are far stronger than the one who lived in the city.</span>
Answer:
22.5J
Explanation:
Here the force is given. Also, the displacement is given as 30cm.
First we should check if all the values are in their standard form.
Here 30cm should be converted to metre by dividing it with 100.
Which would give us 0.3m
Now we use the equation W=force x displacement =75 x 0.3=22.5J
I hope this satisfies you. If u have any further questions please let me know.
I hope u will follow me and make this the brainliest answer.
The only answer that can justify being a hypothesis is C.
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²