This question is incomplete, the complete question is;
A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica strip of the same width and length that is 0.0225 mm thick. What is the maximum charge?
(The dielectric constant of mica is 5.4, and its dielectric strength is 1.00×10⁸ V/m)
Answer: the maximum charge q is 716.85 μF
Explanation:
Given data;
with = 3.0 cm = 0.03
breathe = 5.0 m
Area = 0.03 × 5 = 0.15 m²
dielectric strength E = 1.00 × 10⁸
∈₀ = 8.85 × 10⁻¹²
constant K = 5.4
maximum charge = ?
the capacitor C = KA∈₀ / d
q = cv so c = q/v
now
q/v = KA∈₀ / d
q = vKA∈₀/d = EKA∈₀
we substitute
q = (1.00 × 10⁸) × 5.4 × 0.15 × 8.85 × 10⁻¹²
q = 716.85 × 10⁻⁶ F
q = 716.85 μF
the maximum charge q is 716.85 μF
Answer:
The potential difference between the plates is 
Explanation:
Given that,
Distance = 1.4 mm
Electric field strength 
Let the potential difference is V.
We need to calculate the potential difference between the plates
Using formula of electric field


Where, V = potential
d = distance
Put the value into the formula


Hence, The potential difference between the plates is 
<u>Displacement</u> is the difference between final position and initial position.
<u>Momentum</u> is the quantity of motion contained by an object.
- It is the product of <em><u>mass and velocity.</u></em>
Atoms are basically tiny structures that make up everything. And a compound is something used in a scientific expirement. I don't get the question. You used improper grammar