The tensile stress of the wire supporting 2 kg mass is determined as 6.1 x 10⁷ N/m².
<h3>
Tensile stress of the wire</h3>
The tensile stress of the wire is calculated as follows;
σ = F/A
where;
A = πr² = πD²/4
where;
A = π x (0.64 x 10⁻³)²/4
A = 3.22 x 10⁻⁷ m²
σ = F/A = (mg)/A = (2 x 9.8)/( 3.22 x 10⁻⁷)
σ = 6.1 x 10⁷ N/m²
Learn more about tensile stress here: brainly.com/question/25748369
#SPJ1
Answer:
Explanation:
(a) The force of gravity is called an attractive force because it is the force (although weak) in which a planetary body or matter uses to attract an object towards itself.
(b) Yes, it does and the formula for force of gravity between any two object is
F = G
where m1 and m2 are masses of the first and second object respectively
r is the distance between the center of the two masses
G is the gravitational constant
The role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
<h3>Why is it important to move objects slowly on ramps and escalator?</h3>
It is important to move objects slowly on ramps and escalator because the ramps and escalator moves object in the opposite direction of gravity. If we did not move objects slowly, then the objects or a person get damaged.
So we can conclude that the role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
Learn more about friction here: brainly.com/question/24338873#SPJ1
Answer:
Computer A is 1.41 times faster than the Computer B
Explanation:
Assume that number of instruction in the program is 1
Clock time of computer A is 
Clock time of computer B is 
Effective CPI of computer A is 
Effective CPI of computer B is
CPU time of A is

CPU time of B is

Hence Computer A is Faster by 
Computer A is 1.41 times faster than the Computer B
Making cars that get better gas mileage