Explanation: We are given three balloon carrying different charges: One having positive charge, one having negative charge and one having no charge.
When we bring positive rod near these three balloons, all of them behave differently.
According to the Coulomb's Law:
Like charges repel each other and unlike charges attract each other.
- When we bring positive rod towards the balloon having positive charge, the balloon will move away from the rod, because like charges repel each other.
- When we bring positive rod near negative balloon, the balloon will be attracted to the rod because unlike charges attract each other.
- But, when we bring positive rod towards the balloon having no charge, the charges will be induced in the balloon. Although the balloon is neutral in nature but it will still carry some +ve or -ve charges. So, when the positive rod is bought near neutral ball, the negative side of the balloon will get attracted towards the rod and positive side will be repelled. From this, we say that the rod has induced some charges in the balloon.
Syrup, molasses, and honey have a lower viscosity than water
Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
Answer: option c. the mixing of solute and solvent molecules
Explanation: