It really depends on how far or close the planet is from the sun
Answer:
angle minimum θ = 41.3º
Explanation:
For this exercise let's use Newton's second law in the condition of static equilibrium
N - W = 0
N = W
The rotational equilibrium condition, where we place the axis of rotation on the wall
We assume that counterclockwise rotations are positive
fr (l sin θ) - N (l cos θ) + W (l/2 cos θ) = 0
the friction force formula is
fr = μ N
fr = μ W
we substitute
μ m g l sin θ - m g l cos θ + mg l /2 cos θ = 0
μ sin θ - cos θ + ½ cos θ= 0
μ sin θ - ½ cos θ = 0
sin θ / cos θ = 1/2 μ
tan θ = 1/2 μ
θ = tan⁻¹ (1 / 2μ)
θ = tan⁻¹ (1 (2 0.57))
θ = 41.3º
when it reaches the maximum height, all the energy has now been converted into potential energy.when a ball is thrown straight upto into the air,all its initial kinetic energy converted into gravitational potential energy when it reaches its maximum height
A heat pump is a device that is capable of transferring heat energy from a source of heat to what is known as the heat sink. It also moves thermal energy in the opposite direction of a spontaneous heat transfer through heat absorption from a cold space and releasing it to a warmer space.
When a heat pump is being utilized for heating, it employs the same principle with that of the refrigeration cycle used by an air conditioner or a refrigerator, but in the opposite direction since it releases heat into a conditioned space rather than the surrounding environment. Moreover, heat pump resembles much as refrigeration since it has the same components with the latter except for the presence of a reverse valve.
It uses C. Kinetic Energy