1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rainbow [258]
3 years ago
12

Which statement explains why a short eyeball causes farsighted

Physics
2 answers:
snow_lady [41]3 years ago
8 0
I think the correct answer would be the rays of light focus behind the retina. It is a condition called farsightedness or hyperopia.  Due to his, objects that are close to the eyes seems to be blurry and as it worsens everything would become blurry to the eye.
Nesterboy [21]3 years ago
3 0

Answer: the rays of light focus beyond the retina

Explanation:

You might be interested in
If the angular frequency of the motion of a simple harmonic oscillator is doubled, by what factor does the maximum acceleration
Nataly_w [17]

Answer:

When we double the angular velocity the maximum acceleration (a_{max}) will changes by a factor of 4.

Explanation:

Given the angular frequency (\omega) of the simple harmonic oscillator is doubled.

We need to find the change in the maximum acceleration of the oscillator.

a_{max}=A\omega^2

Now, according to the problem, the angular frequency (\omega) got doubled.

Let us plug \omega=2\times \omega. Then the maximum acceleration will be a_{max'}

a_{max}=A\omega^2

a_{max'}=A(2\times \omega)^2\\a_{max'}=A\times 4\omega\\a_{max'}=4A\omega

a_{max'}=4a_{max}

We can see, when we double the angular velocity the maximum acceleration will changes by a factor of 4.

6 0
2 years ago
If one 9V battery is used in a circuit with a total resistance of 39Ω, what is the current in the circuit?
Ket [755]

Answer:

Using V= IR

I= 0.2307 Ampere

6 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
How many cups of water should you drink in a day?
Harrizon [31]

Answer:

about 2.7liters for women and 3.7liters for men

Explanation:

6 0
2 years ago
What is the meaning of physics​
Valentin [98]

Answer:

the branch of science concerned with the nature and properties of matter and energy

8 0
3 years ago
Other questions:
  • A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.3
    9·1 answer
  • If a flea can jump straight up to a height of 0.550 m , what is its initial speed as it leaves the ground?
    12·1 answer
  • A car going 12m/s travels a distance of 1.5 km. How long did it take the car to travel this distance?
    11·1 answer
  • 7. A mass m1 of 250 g is on a table connected to a massless pulley, as shown. The coefficient of friction between m1 and the tab
    7·1 answer
  • A car climbs 10.0 kilometers up a hill that inclines 8.0 degrees. What is the car's vertical displacement?
    14·1 answer
  • A ball is thrown directly downward with an initial speed of 7.65 m/s froma height of 29.0 m. After what time interval does it st
    12·1 answer
  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes
    9·1 answer
  • 1 ) when a ball is projected upwords its time of rising is ...............the time of falling .
    8·1 answer
  • A shot is projected at an angle of 55 to the horizontal with a velocity of of 10m/s. Calculate 1. the highest point reached 2. T
    9·1 answer
  • The speed of all electromagnetic waves is 3. 00 × 108 meters per second. What is the wavelength of an X-ray with a frequency of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!