Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration.
1.)
Fw (weight) = m (mass) · g (gravity, 9.8 m/s²)
Fw = m * 9.81 m/s²
560N = m · 9.81 m/s²
m ≈ 57.08 kg
2.)
d = 350 meters
t = 65 seconds
velocity = d/t
velocity = 350 meters / 65 seconds
velocity ≈ 5.38 meters/sec
3.)
Force = 35N
Distance = 2 meters
Work = Force · Distance
Work = 35N · 2 meters
Work = 70 J
Answer: 
Explanation:
Given
Length of plank is 1.6 m
Force
is applied on the left side of plank
Force
is applied 43 cm from the left end O.
Mass of the plank is 
for equilibrium
Net torque must be zero. Taking torque about left side of the plank

Net vertical force must be zero on the plank

Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>
Answer:
Explanation:
a) A coin has two sides, therefore the total outcome possible when a coin is tossed is 2 i.e Head (H) and Tail (T)
outcome of two coins will be 4 i.e 2^2
Outcome of three coins will be 8 i.e 2^3 and so on. Since its following a trend, the outcome when 'n' coins is tossed will be 2^n.
Using the general formula, the possible outcome when a coin is tossed 13 times will be "2^13"
b)