Answer:
Explanation:
Range of projectile R = 20 m
formula of range
R = u² sin2θ / g
u is initial velocity , θ is angle of projectile
putting the values
20 = u² sin2x 40 / 9.8
u² = 199
u = 14.10 m /s
At the initial point
vertical component of u
= u sin40 = 14.1 x sin 40
= 9.06 m/s
Horizontal component
= u cos 30
At the final point where the ball strikes the ground after falling , its speed remains the same as that in the beginning .
Horizontal component of velocity
u cos 30
Vertical component
= - u sin 30
= - 9.06 m /s
So its horizontal component remains unchanged .
change in vertical component = 9.06 - ( - 9.06 )
= 18.12 m /s
change in momentum
mass x change in velocity
= .050 x 18.12
= .906 N.s
Impulse = change in momentum
= .906 N.s .
Some call it "air resistance", and others just call it "drag".
Answer:
62.64 RPM.
Explanation:
Given that
m= 4.6 g
r= 19 cm
μs = 0.820
μk = 0.440.
The angular speed of the turntable = ω rad/s
Condition just before the slipping starts
The maximum value of the static friction force =Centripetal force


Therefore the speed in RPM will be 62.64 RPM.
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: