Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
P = F/S = 100/2 =50 (N/m2)
The mass of the baked loaf will be less than the original dough. In making dough for bread, we have ingredients that are liquid such as water, melted butter, food flavoring, etc. All of this liquid ingredients mixed on the dough will definitely turn into vapor. This vapor is responsible for releasing of the aroma of the freshly baked bread.
<span>The Sun and all the planets revolve around Earth.</span>
Answer:
W = 0J
Explanation:
The work done by the dresser is described as
W = f d (cos θ)
F has been given as the weight of this dresser. And it is 3500 N
d = 0 m
When you put these values into the equation
W = 3500 x 0 x cosθ
W = 0 J
This value tells us that the work done on this dresser is zero. No work has been done. Therefore the last option answers the question.