We can make use of the general formula for the geometric series to generate the function representing the average annual salary.
an = a0(r)^(n-1)
Or
f(x) = a0(r)^(x - 1)
Plugging in the given values for the year 2005 and 2006 to ge the value of r.
82000 = 70000 (r)^(1-1)
r = 1.1714
Therefore, the function is:
f(x) = 70,000 (1.1714)^(x-1)
The answer of the number 3 is B.
The answer of the number 6 is B.
<h2>
The required solution is x = 6 and y = 11 </h2>
Step-by-step explanation:
Given system of equations are
x+5y = 11 and x-y =5
![X=\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
and ![B= \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴AX=B
![adj A = \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]](https://tex.z-dn.net/?f=adj%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D)

∴
So,![A^{-1} =\frac{ \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]}{-6}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D%7D%7B-6%7D)
![A^{-1} ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)

⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]} \times \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c} {6}\\ {11} \end{array}\right]}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20%20%7B6%7D%5C%5C%20%20%7B11%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)
∴ x= 6 and y = 11
The required solution is x = 6 and y = 11
Have you ever heard of slader.com?
Answer:
Step-by-step explanation:
keeping track of family relations can be difficult. If Edna marries your mother’s uncle Charlie, what should you call her? If your father’s cousin’s daughter just had a baby boy, how should you two be introduced? Who is your “great great aunt”, and how can you find your “first cousin twice removed”? Fortunately, a bit of mathematical logic can clarify who should be called what, and why – and even measure the degree of genetic similarity between different relatives.