Answer:
<u><em>1) if they are moving away from each other it will take 1.43 secs</em></u>
<u><em>2) if they are moving towards each other then it will take 1.11 secs</em></u>
Explanation:
Distance between them is 10 m
Speed ( if they are moving towards each other)= distance/time
time = 10/8+1
time = distance / speed= 10/9= 1.11 secs
if they are moving away from each other than it will take
time = 10/8-1= 10/7= 1.43 secs
I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Mechanical waves are those waves that require a material medium for propagation.
<h3>What are mechanical waves?</h3>
Generally, we define a wave as a disturbance along a medium which transfers energy. It then follows that waves move energy from one point to another.
Waves can be classified as;
- Mechanical waves
- Electromagnetic waves
Mechanical waves are those waves that require a material medium for propagation such as sound, and waves on a strings.
Learn more about mechanical waves: brainly.com/question/9242091
The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s