1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
monitta
3 years ago
14

A 10-cm-long spring is attached to theceiling. When a 2.0 kg mass is hung from it,the spring stretches to a length of 15 cm.a.Wh

at is the spring constant k?b.How long is the spring when a 3.0kg mass is suspended from it?

Physics
2 answers:
alekssr [168]3 years ago
8 0

(a) 392 N/m

Hook's law states that:

F=k\Delta x (1)

where

F is the force exerted on the spring

k is the spring constant

\Delta x is the stretching/compression of the spring

In this problem:

- The force exerted on the spring is equal to the weight of the block attached to the spring:

F=mg=(2.0 kg)(9.8 m/s^2)=19.6 N

- The stretching of the spring is

\Delta x=15 cm-10 cm=5 cm=0.05 m

Solving eq.(1) for k, we find the spring constant:

k=\frac{F}{\Delta x}=\frac{19.6 N}{0.05 m}=392 N/m

(b) 17.5 cm

If a block of m = 3.0 kg is attached to the spring, the new force applied is

F=mg=(3.0 kg)(9.8 m/s^2)=29.4 N

And so, the stretch of the spring is

\Delta x=\frac{F}{k}=\frac{29.4 N}{392 N/m}=0.075 m=7.5 cm

And since the initial lenght of the spring is

x_0 = 10 cm

The final length will be

x_f = x_0 +\Delta x=10 cm+7.5 cm=17.5 cm

Rzqust [24]3 years ago
6 0

(a) The spring constant of the spring is 392 N/m

(b) Length of the spring is 17.5 cm

\texttt{ }

<h3>Further explanation</h3>

<em>Hooke's Law states that the length of a spring is directly proportional to the force acting on the spring.</em>

\boxed {F = k \times \Delta x}

<em>F = Force ( N )</em>

<em>k = Spring Constant ( N/m )</em>

<em>Δx = Extension ( m )</em>

\texttt{ }

The formula for finding Young's Modulus is as follows:

\boxed {E = \frac{F / A}{\Delta x / x_o}}

<em>E = Young's Modulus ( N/m² )</em>

<em>F = Force ( N )</em>

<em>A = Cross-Sectional Area ( m² )</em>

<em>Δx = Extension ( m )</em>

<em>x = Initial Length ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

initial length of spring = Lo = 10 cm

mass of object = m = 2.0 kg

extension of the spring = x = 15 - 10 = 5 cm = 0.05 m

mass of second object = m' = 3.0 kg

<u>Asked:</u>

a. spring constant of the spring = k = ?

b. length of spring = L = ?

<u>Solution:</u>

<h3>Part a.</h3>

F = kx

mg = kx

k = mg \div x

k = 2.0 ( 9.8 ) \div 0.05

\boxed {k = 392 \texttt{ N/m}}

\texttt{ }

<h3>Part b.</h3>

F' = kx'

m' g = k x'

x' = ( m' g ) \div k

x' = ( 3.0 (9.8) ) \div 392

x' = 0.075 \texttt{ m} = 7.5 \texttt{ cm}

\texttt{ }

L = Lo + x'

L = 10 + 7.5

\boxed {L = 17.5 \texttt{ cm}}

\texttt{ }

<h3>Learn more</h3>
  • Young's modulus : brainly.com/question/6864866
  • Young's modulus for aluminum : brainly.com/question/7282579
  • Young's modulus of wire : brainly.com/question/9755626

\texttt{ }

<h3>Answer details</h3>

Grade: College

Subject: Physics

Chapter: Elasticity

You might be interested in
A 15.0 cm object is 12.0 cm from a convex mirror that has a focal length of -6.0 cm. What is the height of the image produced by
laila [671]
The answer is -7.5cm
4 0
3 years ago
Read 2 more answers
How is property belonging to individuals protected under the Fifth Amendment?
kotegsom [21]

Answer:

By preventing the government from taking property without fair payment.

Explanation:

Answer 1

Please mark me as brilliant and thank you

7 0
3 years ago
Read 2 more answers
The machine which turns in a power station​
Anna [14]

Answer:

generators

Explanation:

the machine which turns in a power station

4 0
3 years ago
3 An un calibrated mercury in glass thermometer immersed in melting ice. The length of the mercury thread is 25 mm when the ther
sammy [17]

Answer:

25 mm = 0 deg C

200 mm = 100 deg C

200 - 25 = 175 = change in thread per 100 deg C

95 - 25 = 70 mm - change in thread from 0 deg C

70 / 175 * 100 = 40 deg C    final temperature at 95 mm

5 0
3 years ago
If an atom has an atomic number of 2, it will be stable with 2 electrons in its valence shell. Group of answer choices True Fals
torisob [31]

Answer: True

Explanation:

Atomic number is defined as the number of protons or the number of electrons that are present in an electrically neutral atom.

Atomic number = Number of protons = number of electrons = 2

Electronic configuration represents the total number of electrons that a neutral element contains. We add all the superscripts to know the number of electrons in an atom.

The electronic configuration will be 1s^2

As its duplet is already complete and it has noble gas configuration , it is stable with 2 valence electrons.

3 0
3 years ago
Other questions:
  • In one of the classic nuclear physics experiments performed by Ernest Rutherford at the beginning of the 20th century, alpha par
    14·1 answer
  • I need help with a physics test, can someone help i am willing to pay.
    11·1 answer
  • Is this right? Please tell me why its wrong or right
    12·1 answer
  • Plz explain the answers with steps and a little bit of explanation. I really need the answers for my exam tomorrow! Please help
    5·1 answer
  • (Look at the minerals in the linked picture)
    5·1 answer
  • A 60.7 kg astronaut is floating in space. She takes her 3.1 kg astronaut drill from her toolbelt and throws it to the right. It
    13·1 answer
  • To support a tree damaged in a storm, a 12-foot wire is secured from the ground to the tree at a point 10 feet off the ground. T
    8·1 answer
  • Regular exercise often leads to an improved body image.
    9·1 answer
  • A wire that is 1.0 m long with a mass of 90 g is under a tension of 710 N. When a transverse wave travels on the wire, its wavel
    15·2 answers
  • The image shows devices that convert wind energy into electrical energy. What is one advantage of using this type of device in p
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!