We did this experiment before, when the rope moves, it represents the waves passing through in from the level of intensity. I hope this is a good answer.
Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






Answer:
Moving a unit "positive" test charge from A to B will result in a reduction in potential
V = K Q / R potential at a point
V2 - V1 = K Q (1 / .4 - 1 / .15) = = k Q (.15 - .4) / .06 = -4.17 K Q
V2 - V1 = -4.17 * 9 & 10E9 * 6.25 E-8
V2 - V1 = -4.17 * 562.5 J/C
V = - 2346 Volts
Which amplitude of the following longitudinal waves has the greatest energy?
amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds