Answer:
Heat flux = 13.92 W/m2
Rate of heat transfer throug the 3m x 3m sheet = 125.28 W
The thermal resistance of the 3x3m sheet is 0.0958 K/W
Explanation:
The rate of heat transfer through a 3m x 3m sheet of insulation can be calculated as:

The heat flux can be defined as the amount of heat flow by unit of area.
Using the previous calculation, we can estimate the heat flux:

It can also be calculated as:

The thermal resistance can be expressed as

For the 3m x 3m sheet, the thermal resistance is

Pure magnesium's formula would just be Mg because all elements except for 7 nonmetals are just left alone when they are by themselves in a formula. The 7 diatomic elements( means they have to have two of them without another element attached to it aka. a subscript two after it when it's by itself) are hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine, and iodine. An easy way to remember the diatomic seven is that when looking at a periodic table if you trace over them from nitrogen over to fluorine and down to iodine all of those elements are diatomic + hydrogen.
And your unbalanced and balanced equations are correct.
(sorry I went on a tangent with the diatomic rules hopefully it will help you in the future though)
Answer: The answer to this question is transpiration.
Explanation: I know this answer because i looked it up in a book. The other explanation is I study about this a lot.
Answer:
The answer is the respiratory system
Explanation:
The function of the respiratory system is to move two gases. These two gases are called oxygen and carbon dioxide. Gas exchange takes place in the millions of alveoli in the lungs and the capillaries that envelop them.
Answer:
3.0 × 10²⁰ molecules
Explanation:
Given data:
Mass of ethanol = 2.3 × 10⁻²°³ g
Number of molecules = ?
Solution:
Number of moles of ethanol:
Number of moles = mass/ molar mass
Number of moles = 2.3 × 10⁻²°³ g / 46.07 g/mol
Number of moles = 0.05 × 10⁻²°³ mol
Number of molecules:
One mole = 6.022 × 10²³ molecules
0.05 × 10⁻²°³ mol × 6.022 × 10²³ molecules / 1 mol
0.30 × 10²⁰°⁷ molecules
3.0 × 10¹⁹°⁷ molecules which is almost equal to 3.0 × 10²⁰ molecules.