The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.
Answer;
-(2) An atom is mostly empty space.
Experiment
-Rutherford conducted the "gold foil" experiment where he shot alpha particles at a thin sheet of gold. The conclusion that can be drawn from these experiment is that an atom is mostly empty space.
-Rutherford found that a small percentage of the particles were deflected, while a majority passed through the sheet. This caused Rutherford to conclude that the mass of an atom was concentrated at its center, as the tiny, dense nucleus was causing the deflections.
Answer:
The value of an integer x in the hydrate is 10.
Explanation:

Molarity of the solution = 0.0366 M
Volume of the solution = 5.00 L
Moles of hydrated sodium carbonate = n


Mass of hydrated sodium carbonate = n= 52.2 g
Molar mass of hydrated sodium carbonate = 106 g/mol+x18 g/mol



Solving for x, we get:
x = 9.95 ≈ 10
The value of an integer x in the hydrate is 10.
Heat= latent heat of fusion+sensible heat+ latent heat of vapourization
=(79.7*5)+(5*100*1)+(540*5)
=3598.5 cal