Answer:
T = 525K
Explanation:
The temperature of the two-level system can be calculated using the equation of Boltzmann distribution:
(1)
<em>where Ni: is the number of particles in the state i, N: is the total number of particles, ΔE: is the energy separation between the two levels, k: is the Boltzmann constant, and T: is the temperature of the system </em>
The energy between the two levels (ΔE) is:
<em>where h: is the Planck constant, c: is the speed of light and k: is the wavenumber</em>
Solving the equation (1) for T:
<em>With Ni = N/3 and k = 1.38x10⁻²³ J/K, </em><em>the temperature of the two-level system is:</em><em> </em>
I hope it helps you!
<span>361.4 pm is the length of the edge of the unit cell.
First, let's calculate the average volume each atom is taking. Start with calculating how many moles of copper we have in a cubic centimeter by looking up the atomic weight.
Atomic weight copper = 63.546
Now divide the mass by the atomic weight, getting
8.94 g / 63.546 g/mol = 0.140685488 mol
And multiply by Avogadro's number to get the number of atoms:
0.140685488 * 6.022140857x10^23 = 8.472278233x10^22
Now examine the face-centered cubic unit cell to see how many atoms worth of space it consumes. There is 1 atom at each of the 8 corners and each of those atoms is shared between 8 unit cells for for a space consumption of 8/8 = 1 atom. And there are 6 faces, each with an atom in the center, each of which is shared between 2 unit cells for a space consumption of 6/2 = 3 atoms. So each unit cell consumes as much space as 4 atoms. Let's divide the number of atoms in that cubic centimeter by 4 to determine the number of unit cells in that volume.
8.472278233x10^22 / 4 = 2.118069558x10^22
Now calculate the volume each unit cell occupies.
1 cm^3 / 2.118069558x10^22 = 4.721280262x10^-23 cm^3
Let's get the cube root to get the length of an edge.
(4.721280262x10^-23 cm^3)^(1/3) = 3.61426x10^-08 cm
Now let's convert from cm to pm.
3.61426x10^-08 cm / 100 cm/m * 1x10^12 pm/m = 361.4 pm
Doing an independent search for the Crystallographic Features of Copper, I see that the Lattice Parameter for copper at at 293 K is 3.6147 x 10^-10 m which is in very close agreement with the calculated amount above. And since metals expand and contract with heat and cold, I assume the slight difference in values is due to the density figure given being determined at a temperature lower than 293 K.</span>
Answer:
D. ![K_{a} = \frac{[\text{H}^{+}][\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%5B%5Ctext%7BNO%7D_%7B2%7D%5E%7B-%7D%5D%7D%7B%5B%5Ctext%7BHNO%7D_%7B2%7D%5D%7D)
Explanation:
The general form of an equilibrium constant expression is
![K = \frac{[\text{Products}]}{[\text{Reactants}]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5B%5Ctext%7BProducts%7D%5D%7D%7B%5B%5Ctext%7BReactants%7D%5D%7D)
In the equilibrium
HNO₂ ⇌ H⁺ + NO₂⁻
The products are H⁺ and NO₂⁻, and the reactant is HNO₂.
∴ ![K_{a} = \frac{[\text{H}^{+}][\text{NO}_{2}^{-}]}{[\text{HNO}_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%5B%5Ctext%7BNO%7D_%7B2%7D%5E%7B-%7D%5D%7D%7B%5B%5Ctext%7BHNO%7D_%7B2%7D%5D%7D)
Answer:I said During the time labeled A when the temperature first starts to increase
Explanation:
I will let you know if it’s right
<span>Magnesium is the central atom of chlorophyll molecule. Chlorophyll is essential in plants for the process of photosynthesis. Chlorophyll are pigments absorbing sunlight. It is made up of porphyrin ring. At the centre of this ring magnesium forms the basic part.</span>