Answer: The correct answer is D. 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit.
Explanation:
Conversion of degree Celsius to Kelvin :
K=^oC+273
Conversion of degree Celsius to degrees Fahrenheit :
^oF=(\frac{9}{5}\times ^oC)+32
By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option B :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option C :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
For option D :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Hope this helps!
The researcher may first weight the beaker with water and then start to heat the water to a constant temperature, for example 30 °C and then start adding salt and stirring. He should add salt slowly until solid salt starts to become visible and the solution starts becoming cloudy. When this happens, he should quickly weigh the beaker. The increase in mass is the mass of salt dissolved at that temperature.
The procedure is then repeated but at an increased temperature until 5-6 temperatures have been tested.
The correct answer is:
d) No, it is not feasible. three metallic ions cannot provide the exact number of electrons that one sulfur needs for the ionic bond.
Because Sulfur is divalent so it need to gain 2 electrons from metal so if we have 3 metals they can't provide only two electrons only.