Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream
Answer:
It remains constant
Explanation:
As we know that buoyant force on an object given as
Fb = ρ Vd g
ρ= Density of fluid
Vd=Volume displace by body
g=10 m/s²
Fb =buoyant force
So from above we can say that buoyant force does not depends on the depth. It only depends on the fluid density and volume displace by body.
So when rock gets deeper and deeper the buoyant force will remain constant.
It remains constant
Answer:
26280
Explanation:
In current time, good telescope can measure redshift to a galaxy in 10 minutes.
Thus, in one year that has on an average 365 days, the total time taken to measure redshifts is = ( 365 *12 *60) minute
= 262800 minutes .
Hence, the number of redshifts observed in a year = (262800/10) = 26280
Answer:
Gravity: downwards
Air drag and air-pressure on the inner surface of the the parachute: Upwards
Explanation:
- If a sky-diver is in the final stages of his descend with open parachute such that the wind is calm and it does not blows him laterally.
- In such a condition the air resistance in the form of drag and the pressure force due to the air captured in the parachute are acting in the upward direction which balance the force of gravity on the body. But this situation may occur momentarily and then again the diver must begin to slowly descend.