Longitude- Horizontal (East West)
Latitude- Vertical (North South)
Consider 20 deg.C. as room temperature.
From tables,
Silver has a resistivity of 1.6*10^-8 ohm-m at 20 deg.C, and it increases by 0.0038 ohm-m per deg.K increase.
Therefore if the temperature rise above 20 deg.C is T, then silver will have resistivity of
1.6*10^-8(1 + 0.0038T) ohm-m
At room temperature, the resistivity of tungsten (from tables) is 5.6*10^-8.
The resistivity of silver will be 4 times that of tungsten (at room temperature) when
1.6*10^-8(1 + 0.0038T) = 4*5.6*10^-8
1 + 0.0038T = 14
T = 13/.0038 = 3421 deg.K approx
Answer: 20 + 3421 = 3441 °C
Answer:
= 0.331 J / g ° C
Explanation:
We have a calorimetry exercise where all the heat yielded by one of the components is absorbed by the other.
Heat ceded Qh = m1 ce1 (
-
)
Heat absorbed Qc = m2 ce2 (
- T₀)
Body 1 is metal and body 2 is water
. Where m are the masses of the two bodies, ce their specific heat and T the temperatures
Qh = Qc
m₁
(
-
) = m₂
(
- T₀)
we clear the specific heat of the metal
= m₂
(
- T₀) / (m₁ (
-
))
= 50.00 4.184 (20.15 -10.79) / (75.00 (99.0-20.15))
= 209.2 (9.36) / (75 78.85)
= 1958.11 / 5913.75
= 0.331 J / g ° C
<span>Dark matter is a type of matter distinct from baryonic matter</span>