Answer:
about 4.74 seconds
Explanation:
The time to fall distance d from height h is given by ...
t = √(2d/g)
t = √(2·110 m/(9.8 m/s^2)) ≈ 4.74 s
It will take the car about 4.74 seconds to fall 110 meters to the river.
__
We assume the car's speed is horizontal, so does not add or subtract anything to/from the time to fall from the height.
Work done = force * distance moved (in direction of the force)
force= mass* acceleration
force=58.1N
58.1*(5.8*10^4)
=3,369,800 J
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
Answer:
0.2448 point²
Explanation:
1 gry = 1/10 line
1 line = 1/12 inch
=> 1 gry in inches = 1/10 * 1/12 = 1/120 inch
=> 1 inch = 120 gry
1 point = 1/72 inch
=> 1 inch = 72 points
Therefore,
120 gry = 72 points
=> 1 gry = 3/5 point
Therefore,
1 gry² = (3/5)² point²
1 gry² = 9/25 point²
This means that 0.68 gry² will be:
0.68 gry² = 0.68 * 9/25 point²
=> 0.68 gry² = 0.2448 point²
Two vectors have magnitudes of 10 and 15. The angle between them when they are drawn with their tails at the same point is 65. The component of the longer vector along the line of the shorter is 6.33 .
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. The term also denotes the mathematical or geometrical representation of such a quantity. Examples of vectors in nature are velocity, momentum, force, electromagnetic fields, and weight.
The taller component will be 15 . There will be two components taller component , one in the direction of shorter component and other perpendicular to the shorter wavelength .
The component of longer wavelength in the direction of shorter will be
= 15 cos (theta ) = 15 cos (65) = 6.33
where theta is the angle between both the vectors
To learn more about vectors here
brainly.com/question/13322477
#SPJ4