1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
2 years ago
6

Consider a large plane wall of thickness L = 0.3 m, thermal conductivity k = 2.5 W/m · °C, and surface area A =12 m2. The left s

ide of the wall at x = 0 is subjected to a net heat flux of q0 = 700 W/m2 while the temperature at that surface is measured to be T1 =80°C. Assuming constant thermal conductivity and no heat generation in the wall, a. Express the differential equation and the boundary conditions for steady onedimensional heat conduction through the wall. b. Obtain a relation for the variation of temperature in the wall by solving the differential equation. c. Evaluate the temperature of the right surface of the wall at x = L.
Engineering
1 answer:
KiRa [710]2 years ago
8 0

Answer:

a) -k* dT / dx = q_o

b) T(x) = -280*x + 80

c) T(L) = -4 C

Explanation:

Given:

- large plane wall of thickness L = 0.3 m

- thermal conductivity k = 2.5 W/m · °C

- surface area A =12 m2.

- left side of the wall at net heat flux q_o = 700 W/m2 @ x = 0

- temperature at that surface is measured to be T1 =80°C.

Find:

- Express the differential equation and the boundary conditions for steady one dimensional heat conduction through the wall.

- Obtain a relation for the variation of temperature in the wall by solving the differential equation

- Evaluate the temperature of the right surface of the wall at x = L.

Solution:

- The mathematical formulation of Rate of change of temperature is as follows:

                                    d^2T / dx^2 = 0

- Using energy balance:

                                    E_out = E_in

                                   -k* dT / dx = q_o

- Integrate the ODE with respect to x:

                                     T(x) = - (q_o / k)*x + C

- Use the boundary conditions, T(0) = T_1 = 80C

                                     80 = - (q_o / k)*0 + C

                                      C = 80 C

-Hence the Temperature distribution in the wall along the thickness is:

                                    T(x) = - (q_o / k)*x + 80

                                    T(x) = -(700/2.5)*x + 80

                                    T(x) = -280*x + 80

- Use the above relation and compute T(L):

                                     T(L) = -280*0.3 + 80

                                     T(L) = -84 + 80 = -4 C

You might be interested in
At an auction of antiques, a bidder for a particular porcelain statue would be trying to ________(a) Maximize the difference bet
alex41 [277]

Answer: MINIMIZE INPUT

Explanation: AUCTION this is a process of selling a product,an Art work other tradeable assets like stocks, bonds based on the person with the highest BIDDING( Higher amount). In most cases the person buying will try to control his bidding to the MINIMUM AMOUNT in order for him to avoid spending higher than expected. Auction sale is sometimes used when trying to sell off old products which has been held for a long time, sometimes Auctions are used to raise funds for a particular Reason like the sale of ARTIFACTS.

5 0
3 years ago
Plant scientists would not do which of the following?
zavuch27 [327]

Explanation:

i think option 4 is correct answer because itsrelated to animal not plants.

6 0
3 years ago
Read 2 more answers
A hydraulic jump is induced in an 80 ft wide channel.The water depths on either side of the jump are 1 ft and 10 ft.Please calcu
krek1111 [17]

Answer:

a) 42.08 ft/sec

b) 3366.33 ft³/sec

c) 0.235

d) 18.225 ft

e) 3.80 ft

Explanation:

Given:

b = 80ft

y1 = 1 ft

y2 = 10ft

a) Let's take the formula:

\frac{y2}{y1} = \frac{1}{5} * \sqrt{1 + 8f^2 - 1}

10*2 = \sqrt{1 + 8f^2 - 1

1 + 8f² = (20+1)²

= 8f² = 440

f² = 55

f = 7.416

For velocity of the faster moving flow, we have :

\frac{V_1}{\sqrt{g*y_1}} = 7.416

V_1 = 7.416 *\sqrt{32.2*1}

V1 = 42.08 ft/sec

b) the flow rate will be calculated as

Q = VA

VA = V1 * b *y1

= 42.08 * 80 * 1

= 3366.66 ft³/sec

c) The Froude number of the sub-critical flow.

V2.A2 = 3366.66

Where A2 = 80ft * 10ft

Solving for V2, we have:

V_2 = \frac{3666.66}{80*10}

= 4.208 ft/sec

Froude number, F2 =

\frac{V_2}{g*y_2} = \frac{4.208}{32.2*10}

F2 = 0.235

d) El = \frac{(y_2 - y_1)^3}{4*y_1*y_2}

El = \frac{(10-1)^3}{4*1*10}

= \frac{9^3}{40}

= 18.225ft

e) for critical depth, we use :

y_c = [\frac{(\frac{3366.66}{80})^2}{32.2}]^1^/^3

= 3.80 ft

7 0
3 years ago
Read 2 more answers
A sensor produces a signal with amplitude 15 mV. A voltage amplifier must amplify the signal such that the amplitude of the outp
Nady [450]

Answer:

42.50 dB

Explanation:

Determine the minimum voltage gain

amplitude of input signal ( Vi ) = 15 mV

amplitude of output signal ( Vo) = 2 V

Vo = 2 v

therefore ; minimum gain = Vo / Vi =  2 / ( 15 * 10^-3 )

                                                         = 133.33

Minimum gain in DB = 20 log ( 133.33 )

                                  = 42.498 ≈ 42.50 dB

8 0
2 years ago
(1.24) Consumer Reports is doing an article comparing refrigerators in their next issue. Some of the characteristics to be inclu
kondaur [170]

Answer:

“height is a quantitative variable ”

Explanation:

According to the question asked, answer is “height is a quantitative variable ”

Height is a quantitative variable because it is related to the measurement and in measurement, when we measure something we deal with number (numerical data)

Numerical data is a type of quantitative data that is why we say “height is a quantitative variable”  

There are some other possible questions in the given paragraph which I would like to mention here,  are as following:

Which are the categorical variables in the given report?

<u>Answer: </u>Energy star complaints

Top, Bottom or side-by-side freezer

Which are the quantitative variables in the given report?

<u>Answer:</u> Estimated Energy Consumption in kilowatts

Width, depth, and height in inches

Capacity in Cubic Feet  

What are the individuals in the report?

<u>Answer: </u>The brand name and model  

8 0
2 years ago
Other questions:
  • Find the sum and product of each of these pairs of numbers. Express your answers as a base 3 expansion. Hint: We can just add an
    5·1 answer
  • A thick spherical pressure vessel of inner radius 150 mm is subjected to maximum an internal pressure of 80 MPa. Calculate its w
    9·1 answer
  • A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65
    8·1 answer
  • Only an outer panel is being replaced. Technician A says that removing the spot welds by drilling through both panels allows the
    11·1 answer
  • Solving Expressions Analytically 1 point Consider the following equation, which describes the speed of sound a in an ideal gas:
    12·1 answer
  • Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i
    11·1 answer
  • You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19
    15·1 answer
  • Water flowing through both a small pipe and a large pipe can fill a water tank in 4 hours. Water flowing through the small pipe
    5·1 answer
  • Are there any companies that you can get a job at as an air craft engeer after university​
    14·1 answer
  • Which explanation best summarizes what went wrong during Paul’s cost analysis?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!