1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
6

Consider a large plane wall of thickness L = 0.3 m, thermal conductivity k = 2.5 W/m · °C, and surface area A =12 m2. The left s

ide of the wall at x = 0 is subjected to a net heat flux of q0 = 700 W/m2 while the temperature at that surface is measured to be T1 =80°C. Assuming constant thermal conductivity and no heat generation in the wall, a. Express the differential equation and the boundary conditions for steady onedimensional heat conduction through the wall. b. Obtain a relation for the variation of temperature in the wall by solving the differential equation. c. Evaluate the temperature of the right surface of the wall at x = L.
Engineering
1 answer:
KiRa [710]3 years ago
8 0

Answer:

a) -k* dT / dx = q_o

b) T(x) = -280*x + 80

c) T(L) = -4 C

Explanation:

Given:

- large plane wall of thickness L = 0.3 m

- thermal conductivity k = 2.5 W/m · °C

- surface area A =12 m2.

- left side of the wall at net heat flux q_o = 700 W/m2 @ x = 0

- temperature at that surface is measured to be T1 =80°C.

Find:

- Express the differential equation and the boundary conditions for steady one dimensional heat conduction through the wall.

- Obtain a relation for the variation of temperature in the wall by solving the differential equation

- Evaluate the temperature of the right surface of the wall at x = L.

Solution:

- The mathematical formulation of Rate of change of temperature is as follows:

                                    d^2T / dx^2 = 0

- Using energy balance:

                                    E_out = E_in

                                   -k* dT / dx = q_o

- Integrate the ODE with respect to x:

                                     T(x) = - (q_o / k)*x + C

- Use the boundary conditions, T(0) = T_1 = 80C

                                     80 = - (q_o / k)*0 + C

                                      C = 80 C

-Hence the Temperature distribution in the wall along the thickness is:

                                    T(x) = - (q_o / k)*x + 80

                                    T(x) = -(700/2.5)*x + 80

                                    T(x) = -280*x + 80

- Use the above relation and compute T(L):

                                     T(L) = -280*0.3 + 80

                                     T(L) = -84 + 80 = -4 C

You might be interested in
True or false tensile forces are smaller in arch bridges
Ivan

Answer:

True

Explanation:

The tensile forces are small in most arches and usually negligible.

4 0
2 years ago
Define an ADT for a two-dimensional array of integers. Specify precisely the basic operations that can be performed on such arra
VashaNatasha [74]

Answer:

Explanation:

ADT for an 2-D array:

struct array{

int arr[10];

}arrmain[10];

An application that stores an array with 1000 rows and 1000 columns, where less than 10,000 of the array values are non-zero. The two different implementations for such arrays that would be more space efficient than a standard two-dimensional array implementation requiring one million positions are :

1) struct array{

int *p;

}arr[1000];

2) struct array{

int *p;

}arr[1000];

6 0
3 years ago
John wants to construct a device using quartz crystal, Which device can he construct?
tatiyna

Answer: Option D, piezoelectric pressure guage

Explanation: Quartz crystal possess a very useful quality in science as they can generate small charges when pressure is applied to them or when they are hit. This property can be harnessed to construct a piezoelectric pressure gauge which would be used to measure and indicate changes in pressure, the quartz crystal releases little voltage each time there is an applied pressure . This device would be able to sense changes in pressure as there would voltage proportional to the applied pressure.

4 0
3 years ago
Read 2 more answers
Can someone tell me what car year and model this is please
Arlecino [84]

Answer:

i think 1844

Explanation:

5 0
3 years ago
Read 2 more answers
The fracture toughness of a stainless steel is 137 MPa*m12. What is the tensile impact load sustainable before fracture that a r
Charra [1.4K]

Answer:

7.7 kN

Explanation:

The capacity of a material having a crack to withstand fracture is referred to as fracture toughness.

It can be expressed by using the formula:

K = \sigma Y \sqrt{\pi a}

where;

fracture toughness K = 137 MPam^{1/2}

geometry factor Y = 1

applied stress \sigma = ???

crack length a = 2mm = 0.002

∴

137 =\sigma \times 1  \sqrt{ \pi \times 0.002 }

137 =\sigma \times 0.07926

\dfrac{137}{0.07926} =\sigma

\sigma = 1728.489 MPa

Now, the tensile impact obtained is:

\sigma = \dfrac{P}{A}

P = A × σ

P = 1728.289 × 4.5

P = 7777.30 N

P = 7.7 kN

7 0
3 years ago
Other questions:
  • CNG is a readily available alternative to
    5·1 answer
  • The wheel and the attached reel have a combined weight of 50lb and a radius of gyration about their center of 6 A k in = . If pu
    9·1 answer
  • A stem and leaf display
    12·1 answer
  • The tropics receive more heat from the sun than is radiated away from the tropics, and polar regions radiate more than they rece
    15·1 answer
  • A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air comp
    6·1 answer
  • A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m K experiences uniform volumetric heat generation at a ra
    15·1 answer
  • What are some quality assurance systems
    11·1 answer
  • What does the supply chain management process involve
    6·1 answer
  • The resistance of a copper wire 200 m long is 21 Q. If its thickness (diameter) is 0.44 mm, its specific resistance is around___
    11·1 answer
  • I need help on the Coderz Challenge missions 3 part 3. PLEASE HELP!
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!