1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
8

What is the focus of 7th grade civics

Engineering
2 answers:
Jobisdone [24]3 years ago
7 0
C. seems like the best answer. i may be wrong so don’t quote me on that
pishuonlain [190]3 years ago
7 0
I’m going to say C is the possible correct answer
You might be interested in
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
Mahamad Siddiqui sent false emails and letters of recommendation on behalf of individuals without their permission to nominate h
shusha [124]

Mahamad Siddiqui sent false emails and letters of recommendation on behalf of individuals without their permission to nominate himself for the Waterman Award at the National Science Foundation. His earlier emails were offered where he had solicited letters were offered as evidence. Siddiqui claimed that content of earlier emails was hearsay. Do the earlier emails come in is given below

Explanation:

1.Mohamed Siddiqui appeals his convictions for fraud and false statements to a federal agency, and obstruction in connection with a federal investigation.   Siddiqui challenges the district court's admission into evidence of e-mail and foreign depositions.

2.On February 18, 1997, Jodi Saltzman, a special agent with the NSF interviewed Siddiqui at Siddiqui's office at the University of South Alabama.   During the interview, Siddiqui signed a statement admitting that he had nominated himself for the Waterman Award, but that he had permission from Yamada and von Gunten to submit forms on their behalf.   Siddiqui also acknowledged in the statement that Westrick had recommended Siddiqui for a different award, the PECASE Award, but that Siddiqui had changed the wording of the letter to apply to the Waterman Award.   Siddiqui was indicted on April 29, 1997.

3.Siddiqui opposed the taking of the depositions on the grounds that the witnesses' personal presence at trial was necessary, and that Indian travel restrictions for its citizens residing abroad prevented him from traveling to Japan and Switzerland.   Specifically, Siddiqui asserted that because of religious persecution in India his travel to Japan or Switzerland related to the criminal action would put his family members still living in India at risk.   The magistrate judge ruled that the government had carried its burden of showing that Yamada and von Gunten would be unavailable to appear at trial, and instructed that Siddiqui's fear of obtaining a travel visa from India because of the threat of persecution of family members should not preclude the taking of the foreign depositions.

4.Yamada's deposition was taken in Japan on March 6, 1998.   At government expense, Siddiqui's counsel attended the deposition and cross-examined the witness, but was not in telephonic contact with Siddiqui during the deposition.   Yamada testified that on February 1, 1997, she received an e-mail stating that if she received a phone call from the NSF to “please tell good words about me.”   Yamada testified that she knew the e-mail was from Siddiqui because the name on the e-mail had Siddiqui's sender address, and it ended with the name “Mo” which Siddiqui had previously told her was his nickname, and which he had used in previous e-mail.

5.Yamada later admitted to Saltzman that she had not given Siddiqui permission to sign, but had made the earlier representation because she thought Siddiqui would go to jail.

6.During cross-examination of Yamada at the deposition, Siddiqui's counsel introduced an e-mail from Yamada to Siddiqui.   This e-mail contained the same e-mail address for Siddiqui as the e-mail received by Yamada and von Gunten apparently from Siddiqui.

7.Von Gunten's video deposition was taken in Switzerland.   At government expense, Siddiqui's counsel attended the deposition and cross-examined von Gunten.   During the deposition, Siddiqui was in communication with his counsel by telephone.   Von Gunten testified at the deposition that he had not submitted a letter of recommendation in favor of Siddiqui for the Waterman Award, and that he had not given Siddiqui permission to submit such a letter in his name.

8 0
4 years ago
There are two identical oil tanks. The level of oil in Tank A is 12 ft and is drained at the rate of 0.5 ft/min. Tank B contains
Luba_88 [7]

Answer:

  16 minutes

Explanation:

This is an example of a class of problems in which two quantities start with different initial values and change at different rates. In such problems, the rates of change are generally ones that cause the values to converge.

The question usually asks when the values will be the same. The generic answer is, "when the difference in rates makes up the difference in initial values."

Here the tanks differ in initial fill height by 12 -8 = 4 ft. The rates of change differ by 0.5 -0.25 = 0.25 ft/min. The more filled tank is draining faster (important), so the fill heights will converge after ...

  (4 ft)/(0.25 ft/min) = 16 min

The level in the two tanks will be the same after 16 minutes.

__

<em>Additional comment</em>

The oil levels at that time will be 4 ft.

You can write two equations for height:

  y = 12 -0.5x . . . . . . . height in feet after x minutes (tank A)

  y = 8 -0.25x . . . . . .  height in feet after x minutes (tank B)

These will be equal when ...

  y = y

  12 -0.5x = 8 -0.25x

  4 = 0.25x . . . . . . . . . . add 0.5x -8

  16 = x . . . . . . . . . . . . multiply by 4 . . . . time to equal height

The graph shows when the tanks will have equal heights and when they will be drained.

4 0
2 years ago
The ice on the rear window of an automobile is defrosted by attaching a thin, transparent, film type heating element to its inne
pshichka [43]

Answer:

A)Q = 1208.33 W/m²

B)K = 0.138 W/m.K

Explanation:

We are given;

inside air temperature;T_∞,i =25 °C = 25 + 273 = 298K

outside air temperature;T_∞,o = -10°C = - 10 + 273 = 263K

Inner surface temperature;T_s,i = 15 °C = 15 + 273 = 288K

Thickness, L = 4mm = 0.004m

convection heat transfer coefficient ; hi = 25 W/(m².K)

A) From an energy balance at the inner surface and the thermal circuit, the electric power required per unit window area is given as;

Q = [(T_s,i - T_∞,o)/((L/k) + (1/hi))] - [(T_∞,o - T_s,i)/(1/hi)]

Plugging in the relevant values with k for glass as 1.4 W/m.k, we have;

Q = [(288 - 263)/((0.004/1.4) + (1/25))] - [(263 - 288)/(1/25)]

Q = 583.33 + 625

Q = 1208.33 W/m²

B) The formula for thermal conductivity is;

K = (QL)/(AΔT)

Where;

K is the thermal conductivity in W/m.K

Q is the amount of heat transferred through the material

L is the distance between the two isothermal planes

A is the area of the surface in square meters

ΔT is the difference in temperature in Kelvin

ΔT = 298K - 263K = 35K

Now, since we have value of heat per unit area to be Q = 1208.33 W/m², let's rearrange the equation to reflect that; Thus ;

k = (Q/A) x (L/ΔT)

K = 1208.33 x (0.004/35)

K = 0.138 W/m.K

5 0
3 years ago
As a means of preventing ice formation on the wings of a small, private aircraft, it is proposed that electric resistance heatin
DIA [1.3K]

Answer:

Average heat flux=3729.82 W/m^{2}

Explanation:

7 0
3 years ago
Other questions:
  • Assuming that the following three variables have already been declared, which variable will store a Boolean value after these st
    14·1 answer
  • LC3 Programming ProblemUse .BLKW to set up an array of 10 values, starting at memory location x4000, as in lab 4.Now programmati
    12·1 answer
  • The Review_c object has a lookup relationship up to the Job_Application_c object. The job_Application_c object has a master-deta
    7·1 answer
  • Calculate the density of the FCC nickel lattice with an interstitial hydrogen in the centered position of the unit cell. You may
    10·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • A fan draws air from the atmosphere through a 0.30-mdiameter round duct that has a smoothly rounded entrance. A differential man
    14·1 answer
  • For each resource, list 3 examples of how it would be used to produce a hamburger. Think outside of the “hamburger” box!
    12·1 answer
  • An ideal vapor-compression refrigeration cycle using refrigerant-134a as the working fluid is used to cool a brine solution to −
    12·1 answer
  • A 1.9-mm-diameter tube is inserted into an unknown liquid whose density is 960 kg/m3, and it is observed that the liquid rises 5
    7·1 answer
  • Technician a s ays both an ohmmeter and a self-powered test light may be used to test for continuity. technician b says both may
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!