Answer:
a. 4.733 × 10⁻¹⁹ J = 2.954 eV b i. yes ii. 0.054 eV = 8.651 × 10⁻²¹ J
Explanation:
a. Find the energy of the incident photon.
The energy of the incident photon E = hc/λ where h = Planck's constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/s and λ = wavelength of light = 420 nm = 420 × 10⁻⁹ m
Substituting the values of the variables into the equation, we have
E = hc/λ
= 6.626 × 10⁻³⁴ Js × 3 × 10⁸ m/s ÷ 420 × 10⁻⁹ m
= 19.878 × 10⁻²⁶ Jm ÷ 420 × 10⁻⁹ m
= 0.04733 × 10⁻¹⁷ J
= 4.733 × 10⁻¹⁹ J
Since 1 eV = 1.602 × 10⁻¹⁹ J,
4.733 × 10⁻¹⁹ J = 4.733 × 10⁻¹⁹ J × 1 eV/1.602 × 10⁻¹⁹ J = 2.954 eV
b. i. Is this energy enough for an electron to leave the atom
Since E = 2.954 eV is greater than the work function Ф = 2.9 eV, an electron would leave the atom. So, the answer is yes.
ii. What is its maximum energy?
The maximum energy E' = E - Ф = 2.954 - 2.9
= 0.054 eV
= 0.054 × 1 eV
= 0.054 × 1.602 × 10⁻¹⁹ J
= 0.08651 × 10⁻¹⁹ J
= 8.651 × 10⁻²¹ J
It is a Physical Change, because the water and the salt kept their original properties. I hope this helps! :) Have a great day!
Answer:
Doppler effect changes the wavelength of the light emitted, depending upon whether source is moving away or coming towards the observer(detector).
Explanation:
Doppler effect in light is actually a relativistic effect but somewhat similar to the one which happens in sound waves.
When the source is moving away from the detector, the wavelength of the light emitted from the source appears to be increased as seen by the detector, as a result the frequency decreases(we know that frequency of light= speed of light/wavelength of light. Here speed of light is constant and frequency of light is inversely proportional to its wavelength)
Due to this decrease in frequency the light emitted from the source appears more red, since red color is on low frequency side in the electromagnetic spectrum.
Similarly for the source moving towards the detector, the wavelength appears to be decreased, thereby resulting in increase in frequency and the source appears blue. The shift in frequency is known as doppler shift.
The shift in frequency when the source is moving away is known as redshift and the one where the source is moving towards detector is known as blueshift
The final velocity of the skateboarder I after the collision is 3 m/s to the left.
<h3>
Velocity of skateboarder I</h3>
The velocity of skateboarder I is determined from the principle of conservation of linear momentum.
m1u1 + m2u2 = m1v1 + m2v2
50(0) + 75(0) = 50v1 + 75(2)
0 = 50v1 + 150
v1 = (-150)/50
v1 = - 3
v1 = 3 m/s to the left
Thus, the final velocity of the skateboarder I after the collision is 3 m/s to the left.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
Density: Mass/Volume
Volume: 3 x 3 x 3cm
= 27cm
27/27
= 1g/cm^3