The greater the cross-sectional area of an object, the greater the amount of air resistance it encounters since it collides with more air molecules. ... It will have to accelerate for a longer period of time before there is enough upward air resistance to balance the downward force of gravity.
The correct answer is true
Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:

Answer:
The answer to your question is: F = 0.4375 N. The force will be 16 times lower than with the first conditions.
Explanation:
Data
F = 7 N
F = ? if the masses is quartered
Formula

Process
Normal conditions F = Km₁m₂/r² = 7
When masses quartered F = K(m₁/4)(m₂/4)/r² = ?
F = K(m₁m₂/16)/r²
F = K(m₁m₂/16r² = 7/16 = 0.4375 N