Answer:
Option B. 3.0×10¯¹¹ F.
Explanation:
The following data were obtained from the question:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
The capacitance, C of a capacitor is simply defined as the ratio of charge, Q on either plates to the potential difference, V between them. Mathematically, it is expressed as:
Capacitance (C) = Charge (Q) / Potential difference (V)
C = Q/V
With the above formula, we can obtain the capacitance of the parallel plate capacitor as follow:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
C = Q/V
C = 3.0×10¯⁹ / 100
C = 3.0×10¯¹¹ F.
Therefore, the capacitance of the parallel plate capacitor is 3.0×10¯¹¹ F.
My best guess would be sun because it is bright but is surrounded by shadows on all sides.
The sun orbits the eth at 2kilogram per sec
<span>D is the correct answer. A Bourdon gage is a popular and commonly used kind of gauge for measuring pressure and vacuum. One use for a Bourdon gage is to indicate steam pressure.</span>
If velocity is decreasing, then acceleration is in the direction
opposite to the velocity.
If the object is moving in the direction that you call 'positive',
then acceleration is negative.