1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
6

The best description of personality traits we have today is

Physics
1 answer:
Anettt [7]3 years ago
3 0
Openness to experience, Neuroticism, agreeableness, Extroversion, Conscientiousness
You might be interested in
What mechanical layer lies below the lithosphere
joja [24]
The <span>asthenosphere is under the lithosphere.</span>
3 0
3 years ago
Read 2 more answers
What happens to the force between two charges if the magnitude of both charges is doubled and the distance between them is doubl
vlabodo [156]

Answer:the force will remain same

Explanation:

because force is equal to the ratio of magnitude and distance

4 0
3 years ago
A sled is pulled up to the top of a hill. At thetop of the hill the sled is released from rest and allowed to coastdown the hill
Stolb23 [73]

Answer:

a.) the speed at the bottom is greater for the steeperhill

Explanation:

since the energy at the bottom of the steeper hilis greater

mgh =\frac{1}{mv^2}

As we can see from above that v is higher when h ishigher.

8 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
How do sea surface temperatures affect evaporation rate?
kotegsom [21]
<span>Answer: The temperature doesn't affect the evaporation rate, but affects on how much of water a parcel of air can contain when saturated which is known by the absolute humidity. Hurricanes are usually happening when the temperature of the sea water west of the Cape Verde islands is over 27 degrees Celsius. If ahead of the path of a hurricane, the sea water temperature drops then it will be less moisture in the air and perhaps the hurricane will fade out. But it is not as simple. How strong a tropical storm is is relative to the difference of temperture between ground level and the top of the troposphere. The greater the difference, the faster the air will rise and the deeper the pressure will be, forcing surrounding air to rush in, thus forming a hurricane force wind. Then there is the fact that the wet adiabatic lapse rate is about half that of dry air. It means that rising moist air cools down slower and therefore rises higher. Hence water is the true fuel of bad weather. But it can't be isolated from the fact that the difference of temperature must be great too. What we often forget is that the tropopause (the border to the stratosphere) is much higher over the equator and therefore, much colder than e.g. the poles.</span>
8 0
4 years ago
Other questions:
  • The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis t
    15·1 answer
  • Assume each tick mark represents 1 cm. Calculate the total displacement from 0 if an object moves 3 cm to the left, then 7 cm to
    5·2 answers
  • Does gender affect your aerobic capacity?
    8·1 answer
  • 3. Work and Conservation of Energy:Calculate the height of a building if 20,000 J energy is required to 200 kg of water from a w
    7·1 answer
  • What the major difference in PsychologyPsychiatry
    10·1 answer
  • The flash on a high-tech camera contains a capacitor of 750 μ F. The battery in the camera supplies 330 V. (a) Determine the ene
    13·1 answer
  • Question: The stored energy that holds the protons and neutrons together inside an atom is
    10·2 answers
  • Which of the following statements is false?
    9·1 answer
  • What will happen to other species in the lake, like fish and mollusks and the aquatic plant life?
    11·2 answers
  • 45. 3. (III) A 7.26 kg bowling ball hangs from the end of a 2.5 m rope. The ball is pulled back until the rope makes an angle of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!