<span>Step 1 -- determine the acceleration of the 200-g block after bullet hits it
a = (coeff of friction) * g
g = acceleration due to gravity = 9.8 m/sec^2 (constant)
a = 0.400*9.8
a = 3.92 m/sec^2
Step 2 -- determine the speed of the block after the bullet hits it
Vf^2 - Vb^2 = 2(a)(s)
where
Vf = final velocity = 0 (since it will stop)
Vb = velocity of block after bullet hits it
a = -3.92 m/sec^2
s = stopping distance = 8 m (given)
Substituting values,
0 - Vb^2 = 2(-3.92)(8)
Vb^2 = 62.72
Vb = 7.92 m/sec.
M1V1 + M2V2 = (M1 + M2)Vb
where
M1 = mass of the bullet = 10 g (given) = 0.010 kg.
V1 = velocity of bullet before impact
M2 = mass of block = 200 g (given) = 0.2 kg.
V2 = initial velocity of block = 0
Vb = 7.92 m/sec
Substituting values,
0.010(V1) + 0.2(0) = (0.010 + 0.2)(7.92)
Solving for V1,
V1 = 166.32 m/sec.
Therefore the answer is (B) 166 m/s!</span>
It depends upon the type of graph that you are talking about,
If the graph is Velocity - Time graph, then time lies on the X axis and speed on the Y axis.
If it is Distance - Time graph, the time lies on the X axis and distance on the Y axis.
But generally, it is ALWAYS TIME IN THE ‘X’ AXIS AND DISTANCE ON THE ‘Y’ AXIS.
Let me know if you have any doubts by either commenting or messaging me
I think its C. because metal is a good conductor of heat
I hope this helps ^-^
let me know if im wrong
Given :
A cell of e.m.f 1.5 V and internal resistance 2.5 ohm is connected in series with an ammeter of resistance 0.5 ohm.
To Find :
The current in the circuit.
Solution :
We know, resistance of the ammeter is in series with the circuit.
So, total resistance is :
R = 2.5 + 0.5 ohm
R = 3 ohm
Also, e.m.f applied is 1.5 V .
Now, by ohm's law :

Therefore, the current in the circuit is 0.5 A.
The correct answer for the question that is being presented above is this one:
Phi = BAsin(theta)
<span>1. Phi(i) = BA </span>
<span>2. Phi(f) = 0 </span>
3. EMF = N(phi(i)-phi(f))/deltat
Here are the follow-up questions:
<span>1. What is the total magnitude Phi_initial of the magnetic flux through the coil before it is rotated? </span>
<span>2. What is the magnitude Phi_final of the total magnetic flux through the coil after it is rotated? </span>
<span>3. What is the magnitude of the average emf induced in the coil?</span>