Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K
Answer:
c. Can't decide with information given.
Explanation:
The chemical and physical processes can be classified as endothermic or exothermic. The first one happens when the system absorbs heat, so the temperature of the surroundings will decrease, and the other one happens when the system releases heat, then the temperature of the surrounds will increase.
Precipitation is the formation of a solid in a solution. The process can happen with absorption or release of heat, it depends on the substance. So, with the information given it's impossible to say it.
Answer:
To interpret a 13C-NMR spectrum we will use some standards very simple. A 13C-NMR spectrum gives us the following information:
1. Indicates the number of non-equivalent carbons in the molecule.
2. Measuring the chemical shift we can intuit the environment
electronic and determine the next functional groups.
3. In this case we cannot count on integration since the different
carbons have different relaxation times.
The number of peaks in the spectrum indicates the number of types of carbon present in the analyzed substance.
The factors that influence the chemical shift of the signals in the 13C NMR are:
- electronegativity of carbon bound groups
-
carbon hybridization
Explanation:
The nuclear magnetic resonance of C13 is complementary to that of H1. This technique is used to determine the magnetic environment of carbon atoms.