(BELOW YOU CAN FIND ATTACHED THE IMAGE OF THE SITUATION)
Answer:

Explanation:
For this we're going to use conservation of mechanical energy because there are nor dissipative forces as friction. So, the change on mechanical energy (E) should be zero, that means:
(1)
With
the initial kinetic energy,
the initial potential energy,
the final kinetic energy and
the final potential energy. Note that initialy the masses are at rest so
, when they are released the block 2 moves downward because m2>m1 and finally when the mass 2 reaches its maximum displacement the blocks will be instantly at rest so
. So, equation (1) becomes:
(2)
At initial moment all the potential energy is gravitational because the spring is not stretched so
and at final moment we have potential gravitational energy and potential elastic energy so
, using this on (2)
(3)
Additional if we define the cero of potential gravitational energy as sketched on the figure below (See image attached),
and we have by (3) :
(4)
Now when the block 1 moves a distance d upward the block 2 moves downward a distance d too (to maintain a constant length of the rope) and the spring stretches a distance d, so (4) is:

dividing both sides by d


, with k the constant of the spring and g the gravitational acceleration.
' D ' is the only correct statement on the list.
Electromagnetic waves are capable of traveling through
many substances, and they're also capable of traveling
through vacuum. Mechanical waves can't travel in vacuum.
Answer:
Force(f)= mass x acceleration
Acceleration (a) is the rate of change in velocity.
F=4N
M=0.2kg
a=F/M
a=4/0.2
a=20m/s^2
Explanation:
A) initial volume
We can calculate the initial volume of the gas by using the ideal gas law:

where

is the initial pressure of the gas

is the initial volume of the gas

is the number of moles

is the gas constant

is the initial temperature of the gas
By re-arranging this equation, we can find

:

2) Now the gas cools down to a temperature of

while the pressure is kept constant:

, so we can use again the ideal gas law to find the new volume of the gas

3) In a process at constant pressure, the work done by the gas is equal to the product between the pressure and the difference of volume:

by using the data we found at point 1) and 2), we find

where the negative sign means the work is done by the surrounding on the gas.
Answer: Because of the fine bore of the tube.
Explanation:
Temperature is the degree of hotness and coldness. And thermometer is the instrument use to measure temperature.
The two most common types of themometric fluids for thermometer are alcohol and mercury.
What makes a clinical thermometer suitable for measuring small changes in body temperature is because of the fine bore of the tube which makes it possible for small temperature changes to cause large changes in the length of mercury columns, making the thermometer very sensitive to temperature changes.
The most prominent feature of the thermometer is the kink or constriction of bore near the bulb.