Answer:
yes ,what's the question
and if the question is why
then it's for gravity
Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)
Answer:
160m/s
Explanation:
The speed of a wave is related to its frequency and wavelength, according to this equation:
v=f ×λ
Answer:
1. 2.5×10¯⁹ N
2. 3.33×10¯¹¹ m/s²
Explanation:
1. Determination of the force of attraction.
Mass of astronaut (M₁) = 75 Kg
Mass of spacecraft (M₂) = 125000 Kg
Distance apart (r) = 500 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Force of attraction (F) =?
The force of attraction between the astronaut and his spacecraft can be obtained as follow:
F = GM₁M₂ /r²
F = 6.67×10¯¹¹ × 75 × 125000 / 500²
F = 2.5×10¯⁹ N
Thus, the force of attraction between the astronaut and his spacecraft is 2.5×10¯⁹ N
2. Determination of the acceleration of the astronaut.
Mass of astronaut (m) = 75 Kg
Force (F) = 2.5×10¯⁹ N
Acceleration (a) of astronaut =?
The acceleration of the astronaut can be obtained as follow:
F = ma
2.5×10¯⁹ N = 75 × a
Divide both side by 75
a = 2.5×10¯⁹ / 75
a = 3.33×10¯¹¹ m/s²
Thus, the acceleration the astronaut is 3.33×10¯¹¹ m/s²
The International System Units or the SI units is scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived. This system was formerly called the meter-kilogram-second (MKS) system.