Answer:
29. 15.87%
30. 4.75%
31. 0.62%
32. probability cannot be calculated (0%)
Step-by-step explanation:
We have that the formula of the normal distribution is:
z = (x - m) / sd
where x is the value we are going to evaluate, m is the mean and sd is the standard deviation
x = 16 and m = 16.5
when sd = 0.5
z = (16 - 16.5) /0.5
z = -1
Now when looking in the z table, we have that the corresponding value is 0.1587, that is, the probability is 15.87%
when sd = 0.3
z = (16 - 16.5) /0.3
z = -1.67
Now when looking in the z table, we have that the corresponding value is 0.0475, that is, the probability is 4.75%
when sd = 0.2
z = (16 - 16.5) /0.2
z = -2.5
Now when looking in the z table, we have that the corresponding value is 0.0062, that is, the probability is 0.62%
when sd = 0
z = (16 - 16.5) / 0
z = infinity
probability cannot be calculated
Answer:
12pq
Step-by-step explanation:
i dont know tbh but i try my best to help out now anyways
\left[Y \right] = \left[ f(x)\right][Y]=[f(x)] .
I hope helping with u this answer
Answer:
Part 1) The measure of arc EHL is 
Part 2) The measure of angle LVE is 
Step-by-step explanation:
step 1
Let
x-----> the measure of arc EHL
y----> the measure of arc EVL
we know that
The measurement of the outer angle is the semi-difference of the arcs it encompasses.
so

we have

substitute

------> equation A
Remember that
-----> equation B ( complete circle)
substitute equation A in equation B and solve for x



Find the value of y


therefore
The measure of arc EHL is 
The measure of arc EVL is 
step 2
Find the measure of angle LVE
we know that
The inscribed angle measures half that of the arc comprising
Let
x-----> the measure of arc EHL

we have

substitute

Answer: There are 28.375 grams in an ounce.
Step-by-step explanation:
Given: Total grams in a pound =454 grams
Total ounces in a pound = 16 ounces
Therefore, 16 ounces = 454 grams
To find grams in an ounce, we need to divide 454 grams by 16, we get
The total grams in an ounce=
∴The total grams in an ounce= 28.375 grams
Hence, there are 28.375 grams in an ounce.