Answer:
The balanced reaction is given by,
⇒ 
Explanation:
The reaction is as given.
Lets count the number of each elements in the reaction.
<em>In reactant side, number of sodium atoms are 1 , lead are 1, nitrogen are 1 and oxygen are 4.</em>
<em>in product side, number of sodium atoms are 2 , lead are 1 , nitrogen are 2 and oxygen are 7.</em>
<em>So we need to balance sodium and oxygen atoms in the reaction.</em>
<em>There is deficient of sodium and oxygen atoms on reactant side</em>.
Thus, multiply (NaNO3) by 2.
<em>Thus, sodium atoms become 2 , nitrogen 2 and oxygen 6. Total 7 oxygen atoms.</em>
Thus, the balanced reaction is,
⇒ 
→ 
Explanation:
- The products formed are chromic chloride and cobalt.
Chromium + Cobaltous Chloride = Chromic Chloride + Cobalt
- Type of reaction is Single Displacement (Substitution) which is there is a displacement of one atom.
Reactants used in the reaction are -
- Chromium

- Cobaltous Chloride

Products formed in the reaction are -
- Chromic Chloride

- Cobalt

Hence, the chemical reaction is as follows -
→
For balancing the above chemical equation we need to add a coefficient of 2 in front of chromium and of 3 in front of cobalt(II)chloride on right-hand-side while of 2 in front of chromium chloride and of 3 in front of carbon monoxide on left-hand-side of the equation.
Hence, the balanced equation is -
→ 
According to the table, I, LIBr releases energy as it dissolves.
<span>Lithium bromide is a synthesized compound of lithium and bromine. Its ultimate hygroscopic quality makes LiBr serviceable.</span>
Answer:
The correct answer is 8.79 × 10⁻² M.
Explanation:
Based on the given information, the mass of NaI given is 4.11 grams. The molecular mass of NaI is 149.89 gram per mole. The moles of NaI can be determined by using the formula,
No. of moles of NaI = Weight of NaI/ Molecular mass
= 4.11 / 149.89
= 0.027420
The vol. of the solution given is 312 ml or 0.312 L
The molarity can be determined by using the formula,
Molarity = No. of moles/ Volume of the solution in L
= 0.027420/0.312
= 0.0879 M or 8.79 × 10⁻² M