0.01 m
< 0.03 m
< 0.04 m urea
As molal concentration rises, so does freezing point depression. It can be expressed mathematically as ΔTf = Kfm.
<h3>What is Colligative Properties ?</h3>
- The concentration of solute particles in a solution, not the composition of the solute, determines a colligative properties .
- Osmotic pressure, boiling point elevation, freezing point depression, and vapor pressure reduction are examples of ligand-like properties.
<h3>What is freezing point depression?</h3>
- When less of another non-volatile material is added, the temperature at which a substance freezes decreases, a process known as Freezing-point depression.
- Examples include combining two solids together, such as contaminants in a finely powdered medicine, salt in water, alcohol in water.
- An significant factor in workplace safety is freezing points.
- If a substance is kept below its freezing point, it may become more or less dangerous.
- The freezing point additionally offers a crucial safety standard for evaluating the impacts of worker exposure to cold conditions.
Learn moree about Colligative Properties here:
brainly.com/question/10323760
#SPJ4
Answer:
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Explanation:
the correct answer is option ( A ) Mixture
Explanation:
It is defined as the substance that is made by the combination of two or more different components. Or, we can say that it is created when solids liquids or gases mixed with one another. Hence, the correct option is, mixture.
Hope it helps you
Mark my answer as brainlist
have a nice day
Answer:
The scaling factor is 5.
Explanation:
Hello there!
In this case, since the scaling factor is defined as the ratio of the molar mass of the molecular formula (complete) to the empirical formula (simplified), it is possible to compute it for the empirical formula of CH2O whose molar mass is 30 g/mol (12+2+16) as shown below:

Therefore, we can also infer that the molecular formula would be:

Best regards!
Description:
<span>"0.0400 mol of H2O2 decomposed into 0.0400 mol of H2O and 0.0200 mol of O2."
This means that a certain amount of H2O2 (0.0400 mol) decomposed or was broken down into two components, 0.04 mol of H2O and 0.02 mol of O2. To examine the system, we need a balanced equation:
H2O2 ---> H2O + 0.5O2
The final concentrations of the system indicates that the system is in equilibrium. </span>