Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases



Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

The compound NaCI is an example of a salt. Salt is formed from a neutralization action of an acid and a base. From the type of reaction itself, we can say that the pH should be neutral or at pH 7.0. No matter what type of acid or base is used.
A solid is hard and the molecules are packed together, a liquid can move around freely because the molecules aren't as packed together :)