Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.
v = momentum ÷ m
= (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s
kinetic energy = (mv∧2)÷2
= (9.1×10∧-31 × 1,153,846.154∧2) ÷2
= (1.21154×10∧-18) ÷ 2
= 6.05769×10∧-19 J
<h2>
Answer:</h2>
1000th multiple of the standard reference level for intensities.
<h2>
Explanation:</h2>
The sound intensity level (β), measured in decibels, of a sound with an intensity of I is defined as follows;
β = 10 log (I / I₀) --------------------(i)
Where;
I₀ = reference intensity
Given from the question;
β = sound level = 30dB
Substitute this value into equation (i) as follows;
30 = 10 log (I / I₀)
Divide both sides by 3;
3 = log (I / I₀)
Take antilog of both sides;
10^(3) = (I / I₀)
1000 = I / I₀
Solve for I;
I = 1000I₀
Therefore the intensity of the sound is 1000 times the standard reference level for intensities (I₀)
Answer:
Solar pesticide sprayer can give less tariff or price in effective spraying. Solar energy is absorbed by the solar panel which contains photovoltaic cells. ... This converted energy utilizes to store the voltage in the DC battery and that battery further used for driving the spray pump.
Explanation:
here is your answer Hope you will enjoy and mark me as brainlist
thank you
Answer:
-62.45m/s and +62.45m/s
Explanation:
The formula for relativistic speed
This is the speed of A with respect to B

where
will be the velocity of person 1: 39m/s
will be the velocity of person 2: -31m/s (negative because is travelling in opposite direction)
and
the velocity of light: 100m/s
The velocity of person 1 measured by person 2 is:

The velocity of person 2 measured by person 1 is:


Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m