1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
3 years ago
13

Simplify (5y^6u^-7)*(5u^9v^-6)*(3v^5y)

Mathematics
1 answer:
Snowcat [4.5K]3 years ago
5 0
Greetings!

Simplify the following expression:
(5y^6u^{-7})(5u^9v^{-6})(3v^5y)

First, multiply the terms 
=(5y^6u^{-7})(5u^9v^{-6})(3v^5y)

=(25y^6u^{2}v^{-6})(3v^5y)

=(75y^7u^{2}v^{-1})

Rearrange the negative exponent:
=(75y^7u^{2}v^{-1})

= \frac{75y^7u^{2}}{v}

Rearrange to follow the correct form:
= \frac{75u^{2}y^7}{v}

This is the most you can simplify this expression:
\boxed{=\frac{75u^{2}y^7}{v} }

I hope this helped!
-Benjamin 

You might be interested in
2.
Alex787 [66]
I think the answer is 20
4 0
3 years ago
I neeed helpppppp pleaseeeeee
zhenek [66]

Answer:

its 15 to the square root of 2

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
49x^2=-21x-2 quadratic functions
lara [203]

Answer: 49x^2=-21x-2 quadratic functions -1/7and -2/7    



Step-by-step explanation:

Quadratic function:

In elementary algebra, the quadratic formula is a formula that provides the solution to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring, completing the square, graphing and others.

Move terms to the left side

49x^{2}  =-21x-2

49x^{2}  -(-21x-2) =0

 Distribute

49x^{2}  -(-21x-2) =0

49x^{2}+21x+2=0

Use the quadratic formula



 x=(-b±√b^{2}  -4ac  ) / 2a

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

 49x^{2}+21x+2=0

let, a=49

b=21

c=2

 Replace with values in this equation

X=(-b±√b^{2}  -4ac  ) / 2a

Simplify

Evaluate the exponent

Multiply the numbers

Subtract the numbers

Evaluate the square root

Multiply the numbers

x=(-21±7) /98

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.Separate

x=(-21+7) /98

x=(-21-7) /98

Solve

Rearrange and isolate the variable to find each solution

x=-1/7

x=-2/7



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Learn more about area here https://brainly.in/question/5597925

#SPJ9

                 

   



   


                                                                                                                                                                                                   







3 0
2 years ago
HOW is it helpful to write numbers in different ways?
Alisiya [41]
It is helpful to write them in different ways
some ways to write them are
1.fractions
2.decimals
3.squareroots (if applicable)

so it would be more helpful in an equation to leave 6/7 in fractional form if  you are going to manipulate it more, because 0.857142857142... is much harder to keep track of than 6/7


and sometimes, they want a percent which is easier to convert to from decimal form than from fractinoal form so ex  0.857142857142...=85.7% vs 6/7 to percent

sometimes there will be square roots and they are easier if left like that ex
√2=1.4142135623...
it would be easier to leav it in square root

it depends on the equation you are trying to solve, because different forms have different pros and cons, some are easier to work with in a certain form but not in another, sometimes, you will need to change between multipule forms during the same problem
8 0
3 years ago
Read 2 more answers
SOMEBODY HELP MEEE!!!!
VladimirAG [237]
Solution= x=5
Alernative form= 21 x - 105= 0<span />
8 0
3 years ago
Other questions:
  • Which best explains why the equation 3x+ 8 = 3x-5 has no solutions?
    14·1 answer
  • Which function is the inverse of function f? f(x)=9x^-12
    11·1 answer
  • Please help! The questions and answers are in the picture!
    6·1 answer
  • Determine whether the graph of the equation is symmetric with respect to the y-axis, the x-axis, the origin, more than one of th
    15·1 answer
  • Can someone help me with this question please
    12·1 answer
  • 3 + 1/3 equals b - 23 State the problem
    6·1 answer
  • When factored, the trinomials x2 + 4x − 21 and x2 + 11x + 28 have one binomial factor in common. What is this factor?
    15·1 answer
  • What is 6.974 rounded to the nearest tenth place?
    7·2 answers
  • Find the slope of the line through each pair of points
    12·1 answer
  • 2)5x + 3 is an example<br> of???
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!