Expand the expression as
(<em>s</em> + 1)³/<em>s</em> ⁵ = (<em>s</em> ³ + 3<em>s</em> ² + 3<em>s</em> + 1)/<em>s</em> ⁵
… = 1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵
Then taking the inverse transform, you get
LT⁻¹ [1/<em>s</em> ² + 3/<em>s</em> ³ + 3/<em>s</em> ⁴ + 1/<em>s</em> ⁵]
… = LT⁻¹ [1/<em>s</em> ²] + LT⁻¹ [3/<em>s</em> ³] + LT⁻¹ [3/<em>s</em> ⁴] + LT⁻¹ [1/<em>s</em> ⁵]
… = LT⁻¹ [1!/<em>s</em> ²] + 3/2 LT⁻¹ [2!/<em>s</em> ³] + 1/2 LT⁻¹ [3!/<em>s</em> ⁴] + 1/24 LT⁻¹ [4!/<em>s</em> ⁵]
… = <em>t</em> + 3/2 <em>t</em> ² + 1/2 <em>t</em> ³ + 1/24 <em>t</em> ⁴
Answer: Option D
Step-by-step explanation:
Soup : 15/5 is 3 x 7 is 21
Peanut: 35/7 is 5 x 5 is 25
Answer:
r = 20
Step-by-step explanation:
-4 = r/20 - 5
-4 + 5 = r/20 - 5 + 5
1 = r/20
1 * 20 = r/20 * 20
r = 20
Answer:
See attachment
Step-by-step explanation:
The given matrix equation is:

To find Matrix X, we need to multiply both sides of the equation by 2 to obtain:

This simplifies to;

By scalar multiplication, we multiply each entry in the matrix A by to 2 to obtain matrix X.